
Auxiliary material: “Scaling laws of single polymer dynamics near attractive surfaces”

This electronic auxiliary material contains supportive evidence for claims made in the main text.

STRUCTURAL PROPERTIES

To give an impression of the various systems analyzed in the main part of our letter, a few snapshots
are shown in Fig. 1.

FIG. 1: Three investigated polymer configurations with N = 100 are shown. The (red) snake-shaped chain is a typical
configuration of a strongly-adsorbed, linear chain in good solvent. The (orange) slightly self-entangled chain represents an
artificially created knot, which becomes unstable after a few 105 time steps. The (blue) dense structure represents a single
polymer in poor solvent conditions.

In the main part of our manuscript we claim that our model reproduces the correct static features
of adsorbed polymers. As to be expected for a self-avoiding walk in d = 2 dimensions, the in-plane
tensor of gyration, Rg,i for both linear and ring polymers scales with a power law Rg,i ∝ Nν with
ν = 3/(d + 2) in good solvent conditions [P.-G. de Gennes, Scaling Concepts in Polymer Physics

(Cornell University Press, London, 1979)]. In poor solvent conditions, Rg,i scales with N1/3 as one
would expect from a dense structure. Evidence for this claim is presented in Fig. 2 in this auxiliary
material. The height of the caps is consistent with an increase proportional to N1/3, which we do
not explicitly demonstrate here.
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FIG. 2: In-plane radius of gyration Rgi as a function of degree of polymerization N for linear and ring polymers. Solid and
broken lines reflect the power laws N3/4 and N1/3, respectively.
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DYNAMICS

In the main text, we make the claim that the dynamics that are consistent with D ∝ N−3/2 can
be obtained on solid surfaces, even when the linear chains do not reptate. While this claim can best
be supported with a real movie, the sequence of configurations shown in Fig. 3 may reveal that the
polymer does not show a motion along its backbone.

FIG. 3: Sequence of snapshots at different times - as measured in units of Lennard Jones time. The initial time would be t = 0,
while the final time is t = 5, 000.

In the main text, the claim is made that polymers that are locally commensurate show less weak
scaling than incommensurate polymers. This leads to the counter-intuitive behavior that polymers
that are locally commensurate with the substrate can diffuse faster than those that are incommen-
surate, even though their local dynamics must be slower, since all atoms can simultaneously sit
in potential energy minima. However, presence of incommensurability results in a more correlated
movement of monomers. In Fig. 4 we provide a schematic, graphical rationale why the motion for a
commensurate chain is uncorrelated, i.e., individual segments can move without changing the poten-
tial energy of other monomers. For incommensurate monomers, a similar argument does not hold
and thus correlation can exist over many different bond lengths.

The stronger scaling of incommensurate chains is demonstrated in Fig. 5. As argued in the main
text, short commensurate chains diffuse more slowly because the local locking is better, however, for
long chains, the incommensurate chain is slower.
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FIG. 4: It is shown that a monomer residing in a commensurate substrate (as indicated by the grid) can make a local move
(as indicated by the arrow) without affecting the energy of other monomers. A similar sketch cannot be drawn if polymers and
substrate are locally incommensurate. All monomers will have to readjust after a single monomer has been moved.

FIG. 5: Comparison of the diffusion coefficient for polymers that are locally either commensurate or incommensurate with the
substrate. Incommensurate systems show 1/N3/2 scaling, while commensurate systems show 1/N scaling. The inset shows a
snapshot of a part of an adsorbed chain that is commensurate with the substrate.

MODEL DETAILS

Our simulations are based on a well-known bead-spring model by Kremer and Grest [K. Kremer
and G. S. Grest, J. Chem. Phys. 92, 5057 (1990)], in which monomer units interact with Lennard
Jones potentials

VLJ = 4ε[(σ/r)12
− (σ/r)6] − Vcut (1)

if the distance r between two monomers is less than a cutoff distance rc. Vcut is chosen such that VLJ

is zero for r ≥ rc. In poor solvent conditions, rc = 2 ·21/6σ is chosen, while good solvents are modeled
with rc = 21/6σ. Adjacent monomers on a chain are additionally bound by a FENE potential

Vchain(r) = −(1/2)kR2
0 ln[1 − (r/R0)

2], (2)

where R0 = 1.5σ and k = 30ε/σ2. The results presented in the main text and in the auxiliary
material are expressed in units of the Lennard Jones energy ε, the Lennard Jones radius σ, and the
mass m of individual monomers.

The thermal energy is set to 0.5ε, which makes the polymers stick to the substrate and to them-
selves in poor solvents. They are yet sufficiently mobile to diffuse laterally during the time scale of
the simulation.
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Temperature is imposed with the coupling of monomers to a Langevin thermostat which acts only
on the normal to the surface. There is no implicit or explicit coupling to solvent particles. As argued
in the main text, the translation-rotation coupling due substrate corrugation induces a weak effective
damping in lateral direction, see also D. A. Aruliah, M. H. Müser, and U. D. Schwarz, Phys. Rev.
B 71, 085406 (2005).

The substrate consists of a (111) surface of a face-centered-cubic solid. The geometry is essentially
square with a fixed linear dimension of 75 σ and periodic boundary conditions are employed in
lateral direction. Atoms in the substrate are confined to their lattice sites with a nearest-neighbor
distance of 1.209 σ. In some cases we also performed simulations where nearest neighbor lattice
spacing is made comparable to the effective bond length of polymer (i.e., 0.97σ). Monomers and
substrate atoms interact with the same potential as monomers interact with each other in poor
solvent conditions.

In figure 6 it is demonstrated qualitatively that roughness can be reduced by increasing the Lennard
Jones radius for the interaction between monomers and wall atoms.

"smooth" surface σ=1.15σ0

"rough" surface σ=0.85σ0

FIG. 6: Two surfaces are drawn in which the spacing between the surface atoms is identical. However the LJ interaction radiiσ
differ between the two. The larger value of σ leads to the smoother surface envelope. The values are exaggerated with respect
to those used in the simulations for demonstration purposes.


