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We present a molecular dynamics study of a generic model for single-polymer diffusion on surfaces,
which have variable atomic-scale corrugation but no artificial, impenetrable obstacles. The diffusion
coefficient D scales as D ∝ N−3/2 with the degree of polymerization N for strongly-adsorbed, linear
polymers on solid substrates in good solvents. Weaker scaling, i.e., D ∝ N−1 is found if (i) the
substrate is a fluid, e.g., a membrane, (ii) the polymer is a ring polymer, and (iii) the polymer is
commensurate with the substrate. In poor solvents, diffusion on solids slows exponentially fast with
N . Reptation is not observed in any of the simulations presented here.

The surface diffusion of macromolecules has attracted
increased attention within the last decade [1–5]. These
studies are motivated in part by the desire to obtain
a fundamental understanding of the diffusion of linear
macromolecules on surfaces, including that of DNA [6]
and phospholipids [7, 8] on lipid bilayers. Further mo-
tivation for these studies comes from existing or poten-
tial technological applications of adsorbed polymers such
as they occur for surface coating, adhesives, and tribol-
ogy [9]. Progress in measuring molecular diffusion coeffi-
cients of adsorbed single polymers [2, 6] or of polymers in
thin films [10] was made owing to the application of fluo-
rescence spectroscopy. However, despite these advances,
it is not yet possible to extract direct experimental infor-
mation on atomic-scale structure and dynamics of poly-
mers. For example, it is not possible to ascertain whether
or not polymers are reptating.

A key questions in adsorbed single-polymer systems
is how quantities such as the lateral diffusion coefficient
D, the end-to-end chain relaxation time τ , and in-plane
radius of gyration Rg, scale with the degree of polymer-
ization N . While the scaling laws for the structural prop-
erties appear to be well-established, e.g., Rg ∝ Nν with
ν = 0.75 [3, 6, 9, 11] for planar geometries in good sol-
vents, there is conflicting information on the dynamical
exponents, in particular in the D ∝ N−y relation. Two
experiments found y = 1 [6, 7] for polymers adsorbed on
lipid bilayers, while another study identified y = 3/2 for
a polymer adsorbed on a fused silica surface [2].

Because of the difficulties associated with the analyti-
cal description of polymer dynamics, simulation has be-
come the method of choice [1, 3–5, 11, 12] to ascertain
what determines the dynamical exponent y. Depending
on the model and the simulation method, different results
are obtained, e.g., 1/N in a Monte Carlo (MC) study of
a bead spring model on a smooth surface [11], a cross-
over from D ∝ 1/N to 1/N3/2 depending on the concen-
tration of random obstacles on the surface in a mole-
cular dynamics simulation (MD) [3], a crossover from
an apparent dynamical exponent y = 1.7 for N ≤ 150
to y = 3/2 for larger N in a MC simulation of a two-
dimensional bond-fluctuation model where impenetrable
obstacles were present on the surface [1]. Most recently,

an MD study [5] of a bead-spring model found that
D ∝ 1/N3/2 for surfaces that were called “solid” and ei-
ther had impenetrable barriers or “sticking points,” while
D ∝ 1/N was identified on so-called “fluids,” which how-
ever were sometimes modeled with the help of obstacles of
small, albeit finite concentration, surface roughness, and
density modulations. Lastly, a polymer lattice model on
a hexagonal lattice without obstacles was suggestive of
the law D ∝ (aN + bN2)−1, where a and b were system-
dependent coefficients [12]. In many of the simulations,
it was argued that reptation dynamics occur [3, 5, 12].

It is surprising that none of the computational studies
discussed in the previous paragraph, investigated what
we consider to be the most generic model for polymer dif-
fusion on surfaces, namely, a simple bead-spring chain ad-
sorbed onto a simple but corrugated substrate [13] with-
out diverging energy barriers, such as is obtained when a
surface is modeled with discrete atoms. Corrugation (or
more generally speaking breaking in plane translational
Galilean invariance) is a necessary “ingredient” to exert
shear forces. Lattice models usually neglect the way in
which the substrate breaks translational invariance and
it is thus not clear if one can relate their predictions to
experiments. In many models, where translational in-
variance is broken, it is typically done by introducing
energy barriers having infinite height. One may argue
that these obstacles are somewhat artificial and thus do
not necessarily produce the generic features of smooth
surfaces which only have atomic-scale roughness, as is
the case for fused silica surfaces.

In order to avoid artifacts induced by infinitely large
energy barriers and/or smooth walls, our analysis of
single-polymer diffusion shall be based on a model that
includes an atomically flat but discrete surface. Due to
the discreteness of the surface, finite (free energy) cor-
rugation barriers which prevent the polymers from free
lateral sliding, are present. For fluids, no static barriers
or lateral heterogeneity exist.

We have shown previously that (static) surface cor-
rugation appears to be a key factor in determining the
dynamics of polymers at interfaces [13]. Simulating
generic bead-spring polymers moving on surfaces that
only have atomic-scale corrugation, we were able to re-
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produce the perhaps counter-intuitive experiments by
Zhao and Granick [10]: They had found that D first
increased with deposition concentration Γ and then sud-
denly dropped to a small value at a threshold concen-
tration Γ∗. Our simulations suggested that the sudden
drop in D may be due to a structural transition from
single to double layers and that the double layers have
more geometric flexibility to lock into the substrate’s reg-
istry, which increases energy barriers and thus reduces
lateral mobility at large Γ [13]. In comparison to other
work where either an ideally flat surface or a strictly
two-dimensional polymer embedded in a plane contain-
ing random obstacles were used, we believe that our sce-
nario mimics the generic features of the experiments more
closely. Therefore it would be interesting to revisit sin-
gle polymer diffusion as a function of N with the same
model that reproduced the non-monotonic behavior of D
with Γ. We will also investigate the effect of molecular
structure (linear vs. ring polymers) and initial conditions
(flat adsorption vs. crossings).

In this work, all simulations are based on the same
empirical bead-spring model [14] as for our study of
D(Γ) [13]. Monomers interact with each other and with
surface atoms through truncated Lennard Jones (LJ)
potentials, which are all identical except in good sol-
vent conditions, when the cutoff radius for the monomer-
monomer LJ potential is reduced from twice to one times
21/6 times the LJ radius. As in our previous work, the
thermal energy is set to half the LJ energy unit. Tem-
perature is imposed through a Langevin thermostat that
only acts on the motion normal to the surface. The cou-
pling strength of the thermostat was varied by a factor
of ten without changing the results in any discernable
fashion. We did not include explicit solvent in order to
emphasize the damping of the polymers due to wall fric-
tion. Since our calculations are in thermal equilibrium
and thus in linear response, damping due to wall fric-
tion and damping due to hydrodynamic interactions are
linearly additive.

The configurations are equilibrated for a few hundred
million MD time steps (depending on the chain size) and
then observations are carried out over another 15 · 106

MD time steps, this corresponds to 7.5 · 104t0, where
t0 is the LJ time unit. To illustrate our simple, albeit
generic model further, typical equilibrated configurations
on solids are shown in the auxiliary electronic material
for both solvent conditions [15]. In some cases, we also
considered ring polymers, in which case the first and the
last monomers are connected by a covalent bond.

We wish to note that the dynamics of polymers shortly
after deposition appears to be rather interesting, com-
plex, and of relevance for the long-time dynamics, in
particular if the surface concentrations are higher than
those used in the current work [13]. The relevance of ini-
tial conditions, however, appears to be less of an issue for
single polymer deposition. For the same interaction po-

tentials, single polymers, even longer ones, have a much
lower propensity to form double layers or other multi-
layered structures than shorter chains at moderate con-
centrations, say at 50% surface coverage. For instance,
when initial structures are prepared such that the poly-
mers have single or double crossings, the crossings be-
come unstable after a few 105 MD time steps within the
parameter space investigated here. These observations
motivated us to favor “flat” deposition of the polymers
onto the surfaces. Of course, our initial conditions do not
prevent the polymer from “piling up” at long times when
the solvent conditions are poor.

Although the central interest in this paper is the cal-
culation of the in-plane diffusion coefficient D, we wish
to point out that we provide evidence in the auxiliary,
electronic material [15] that our model shows the right
scaling for the in-plane radius of gyration. D is obtained
by measuring the slope of the centroids’ mean-square dis-
placement at large times. The main part of Fig. 1 sum-
marizes the most important results for good solvent con-
ditions. The data for our default system (linear polymer,
regular interaction between monomers and wall atoms)
is consistent with the power law D ∝ N−3/2 predicted by
Azuma and Takayama [1] and with the experiments on
PEG near fused silica surface [2]. It is surprising that in-
troducing impenetrable barriers as done in Ref. 1 appears
to have the same effect on the D(N) scaling as finite bar-
riers that can be overcome by thermal fluctuation. We
certainly feel that our model is not only simpler, but as
argued above, more general and natural than previously
used models to describe the dynamics. Unfortunately,
our results appear to be in partial contradiction to those
of Qian et al. [5], who found that roughness and density
modulation near the surface is not necessarily sufficient
to obtain y = 3/2.

The result for our default system and its apparent con-
tradiction with Ref. 5 invokes the question of whether a
cross-over to linear scaling would be found if N were dis-
tinctly larger than those values investigated here. An ar-
gument for this type of crossover would be that fractions
of the polymers may move as uncorrelated domains and
thus lead to Rouse dynamics at large values of N . We
feel that this argument should be correct (at least) for di-
mensions equal to or above the upper critical dimension
of the self-avoiding walk, i.e., for d ≥ 4. However, inves-
tigating this issue in dimension four or above is beyond
the scope of this manuscript.

In order to investigate the possibility of a cross-over in
two-dimensional surface diffusion, the roughness of the
walls was reduced. A reduced roughness should reduce
the pinning and thus make the substrate more fluid-like.
Roughness was reduced by increasing the LJ radius for
the interaction between wall atoms and monomers, σsp

while keeping all other terms constant. This way the
amplitude of the roughness is changed without alter-
ing the substrate’s lattice spacing. When roughness is
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FIG. 1: (Color online) Lateral diffusion D(N) as a function
of degree of polymerization N for good solvent and both lin-
ear (triangles) and ring polymers (circles). Results are shown
for different LJ radii σsp that is used for the interaction be-
tween monomers and wall atoms. Large values of σsp result
in small roughness and vice versa. Triangles down, right, and
up reflect high, medium, and small corrugation, respectively.
Lines are guides to the eye. Solid lines (blue and red) indi-

cate an N−3/2 power law, long-dashed (green, red and black)
lines N−1 and short-dashed (black) lines an N−0.75 power
law. Error bars are about symbol size. Inset: D(N) for linear
polymers in a poor solvent.

made very small, D ∝ N−1 is observed within the full
range of N , which is to be expected for the diffusion on
a fluid substrate (see discussion below). For intermedi-
ate roughness, a cross-over from 1/N to 1/N3/2 scaling is
observed with increasing N , in contradiction to the argu-
ment that the polymer should decompose into units that
move in an uncorrelated fashion. Due to the observation
of this cross-over, we expect D ∝ N−3/2 at large N for
any strongly adhering surface with finite, static barriers.
Since the energy barriers are finite, no reptation is re-
quired for the polymers to diffuse on the surface. Indeed,
when looking at movies of the MD simulations, see also
a series of snapshots in the auxiliary electronic material,
no indication of reptation can be identified [15].

An ideal flat surface (plus a linear-response damping
acting on the monomers in lateral direction due to colli-
sion with atoms in the substrate) automatically induces a
damping that increases with N so that D should scales as
1/N or potentially faster if additional dissipation chan-
nels are present. In our simulations, we neither imposed
external damping within the lateral direction nor did we
include hydrodynamic interactions. However, due to the
substrate’s residual roughness, coupling of longitudinal,
transverse, and normal motion allows dissipating the ki-
netic energy associated with the polymer’s in-plane cen-
ter of mass motion to the normal degrees of freedom.

This effect is sufficient to reproduce the same effect as hy-
drodynamic interaction with the substrate as long as the
chain is fully adsorbed. This is why we abstained from in-
corporating hydrodynamic interactions directly and why
we can observe an apparent exponent of y = 1 at small N
and small roughness. A damping linear in N also occurs
on flat substrates if the interaction between susbtrate and
polymers are modeled with a dissipative-particle dynam-
ics thermostat [5].

We can now explain why experiments (as well as some
simulations) sometimes indicate Rouse dynamics (y =
1.0) instead of y = 3/2. The experiments favoring y = 1.0
were done on polymers adsorbed onto lipid bilayers [6, 7].
These, however, are known to be in a fluid state. The
polymers are thus “rubbing” against an on average un-
corrugated, homogeneous fluid rather than against a solid
with static corrugation, so that the damping (i.e., the in-
verse diffusion constant) of the polymers centroid is sim-
ply proportional to the number of monomers in contact
with the fluid. For strongly adsorbed polymers the ar-
gument naturally leads to Rouse dynamics because each
monomer is in contact with the lipid bilayer. The same
argument explains why lattice models which do not ex-
plicitly include barriers, find D ∝ 1/N . MC dynamics
are intrinsically over damped, but the absence of any
substrate-induced barrier does not add any (additional)
resistance to sliding. The experiment suggesting that
y = 3/2 was performed on a solid substrate. Our simu-
lations indicate that finite, static (free) energy barriers,
as they exist on solid substrates, produce dynamics with
y = 3/2, at least if N is made sufficiently large. While
this conclusion supports a similar conclusion by Qian et

al. [5], we would like to emphasize that our fluids do not
have any type of heterogeneity, while our solids neither
require impenetrable barriers nor sticking points.

The observation of a cross-over from y = 1 to y = 3/2
for intermediate roughness suggests that the motions of
the monomer units are highly correlated throughout the
full chain (as argued above, if one could decompose the
polymer into uncorrelated units, 1/N scaling should be
observed). Thus, imposing a topological constraint, such
as constraining the polymer to form closed rings, should
have the potential to alter the dynamical exponent y,
even though static properties such as the exponent ν may
remain unaltered. When simulating ring polymers, we
indeed find a different value for y, i.e., a cross-over from
y = 0.75 for short chains (N ≤ 70) to y = 1 for long
chains. The damping for long chains is probably due
to the viscous damping force, which is an unavoidable
consequence of the transverse-normal coupling discussed
in a precedent paragraph.

In order to reduce the correlation between different
monomer segments, we also investigated polymers that
were made locally commensurate with the substrate, i.e.,
the ideal bond length between two adjacent monomers
in the backbone of the chain was made identical to the
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FIG. 2: (Color online) Relation between R2
g/D and end-to-

end relaxation time τ for the various models. Symbols are
consistent with previous figures. For ring polymers, τ is the
relaxation time related to the motion of an arbitrary monomer
with index n and the one with index n + N/2. The solid line
has slope four and zero intercept.

spacing between two potential energy minima of the sub-
strate. Polymer segments can now locally rearrange with-
out changing the net energy of the polymer. It had been
argued that one possible reason for the N−3/2 powerlaw
is that substrate-mediated forces may be correlated [2].
Our results are consistent with this conjecture: For com-
mensurate polymers, D vanishes linearly with N , see [15]
for more details. A very long commensurate chain thus
diffuses faster than an incommensurate chain despite the
better local locking of the commensurate chain.

As the chain’s conformation in good and bad solvent
are quite distinct, one may also expect different scaling
laws D(N) for good and poor solvent conditions. In fact,
in the range of degrees of polymerization investigated, D
decreases exponentially fast with N in bad solvents as can
be seen in the inset of Fig. 1. There are two key factors
that contribute to the slow dynamics in poor solvents:
First, denser structures lead to more highly correlated
motion of the monomers, i.e., in poor solvents, the longer
the chain, the more monomers have to move at a given
time when one monomer jumps from one favorable site
on the substrate to the next one. Second, as the bonds
between adjacent monomers in the polymer do not have
to be quasi-parallel to the surface as soon as more than a
single layer is formed, the polymers have more geometric
flexibility to lock into the registry of the substrate. This
locking then leads to exponentially increased barriers to
diffusion. A similar argument was hold responsible for
the non-monotonic dependence of D on surface coverage
Γ, [13] as mentioned above.

So far, we have only considered the chain’s center-of-

mass motion. It is worth noting that the internal relax-
ation dynamics follow the trends known from the bulk
[16], in particular, the relaxation time of the end-to-end
distance is inversely proportional to the chain’s centroid
diffusion constant. Specifically, for all simulations pre-
sented here we find that the equation τ = R2

g/2dD holds
within a stochastic error of about 6% (see Fig. 2). This
shows that the polymers do not translate as rigid units.

In conclusion, our MD simulations support the obser-
vation that the exponent in the relation D ∝ N−y is
mainly determined by phase of the substrate [5], i.e.,
y = 1 for fluids substrates and y = 3/2 for solid sub-
strates. However, we achieved these results by using dis-
crete, solid surfaces with finite energy barriers and with-
out sticking points, while our fluids did not have (artifi-
cial) heterogeneities. We could also show that strongly
adsorbed ring polymers and locally commensurable poly-
mers have weaker scaling with y = 1, and moreover pre-
dict an exponential decrease in D for poor solvent con-
ditions.
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