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Understanding the origin of the pseudogap is an essential step towards elucidating the pairing
mechanism in the cuprate superconductors. Recently there has been strong experimental evidence
showing that C4 symmetry breaking occurs on formation of the pseudogap. This form of symmetry-
breaking was predicted by the Fluctuating Bond Model (FBM), an empirical model based on a
strong, local coupling of electrons to the square of the planar oxygen vibrator amplitudes. In
this paper we approach the FBM theory from a new direction, starting from ab initio molecular
dynamics simulations. The simulations demonstrate a doping-dependent instability of the in-plane
oxygens towards displacement off the Cu-O-Cu bond axis. From these results and perturbation
theory we derive an improved and quantitative form of the Fluctuating Bond Model. A mean field
solution of the FBM leads to C4 symmetry breaking in the oxygen vibrational amplitudes, and to
a d-type pseudogap in the electronic spectrum, the features linked by recent experimental data.
The phase diagram of the pseudogap derived from mean field theory, its doping- and temperature-
dependences, including the phase boundary T ∗, agree well with experimental data. We extend the
theory to include the long range Coulomb interaction on the same basis as the FBM interaction.
When the long-range Coulomb interaction is included in the FBM, a CDW instability in the charge
channel is predicted which explains the nanoscale, rather than spatially uniform, behavior of the
C4 symmetry-breaking. Taking the CDW into account, with the theoretical k-dependence of the
pseudogap, enables the Fermi Surface arc phenomenon to be understood.

After years of intensive theoretical and experimen-
tal effort, there is still no consensus as to the pairing
mechanism in cuprate high temperature superconductors
(HTS), nor on the origin of the pseudogap (PG)1, which
needs to be an integral part of the eventual solution to
the HTS problem. Perhaps it is time to extend our think-
ing beyond some of the most attractively simple models
explored over the last 20 years, such as for example the
large-U Hubbard model2 or models with linear electron-
phonon coupling3.

Symmetry-breaking permeates all branches of physics,
and its study often allows us to gain insight into the
nature of the underlying physical phenomena. This ap-
proach can be invoked in order to throw light on the
origin of the pseudogap in cuprate high temperature su-
perconductors (HTS), and ultimately to help elucidate
the nature of the pairing mechanism in these materi-
als. Recent evidence shows that the pseudogap is as-
sociated with the presence of C4 symmetry breaking4–6,
i.e. the a and b directions in the CuO2 plane become
nonequivalent. The nature of the C4 symmetry break-
ing at low temperature is revealed by atomic resolution
STM studies7, which show that it is associated with the
oxygens in the CuO2 plane, the oxygens in the x-directed
Cu-O-Cu bonds differing from the oxygens in y-directed
Cu-O-Cu bonds both in their electronic properties and
in their vibrational amplitudes. At low temperature
and under conditions where dopant nonuniformity cre-
ates electronic nanoscale inhomogeneity8 (a novel form
of ”nematic” rather than crystalline order9,10), C4 sym-
metry breaking has been found to be coterminous in

space with the regions where the PG is present5. At
high temperatures, around the temperature T ∗ at which
the PG appears, C4 symmetry breaking has been found
experimentally4 to turn on at the temperature T ∗, and
the simplest assumption is that this high temperature C4
symmetry breaking has the same origin as that revealed
by the low temperature STM work. The most straight-
forward reading of the evidence is then that the PG is
a symmetry breaking phenomenon, involving a nematic
phase in which the oxygens in x-directed Cu-O-Cu bonds
become electronically and vibrationally different from the
oxygens in y-directed Cu-O-Cu bonds.

In an earlier study11 which introduced an empirical
model for cuprate HTS, the Fluctuating Bond Model,
C4 symmetry breaking was predicted prior to its ini-
tial observation8, and indeed in this theory oxygens in
x- and y- directed Cu-O-Cu bonds were shown to be-
come electronically and vibrationally distinct. The basis
of the FBM is a nonlinear coupling between the the vi-
brational coordinates of the oxygen atoms in the CuO2

plane and the electron system, distinguishing it from the
linear electron-lattice coupling12 in conventional BCS su-
perconductivity. The FBM naturally explained11 the d-
wave superconducting properties of HTS13, where earlier
related approaches14,15 were unsatisfactory as models of
HTS as they predicted s-wave. Reference16 explores su-
perconductivity arising from even higher order couplings.
For the FBM to be convincing as a mechanism for C4
symmetry breaking, it needs to be shown that electron-
lattice coupling, and in particular nonlinear coupling, is
significant in HTS, and that the FBM can describe the
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experimental behavior of the C4 symmetry breaking/PG
phenomenon. These are the objectives of this paper.

The significance of electron-lattice coupling in cuprate
HTS can be inferred from experimental evidence re-
garding the pairing mechanism3, such as the univer-
sal doping-dependent oxygen isotope shift17,18 and the
superconductivity-induced softening in oxygen vibration
frequency19,20. However, conventional linear electron-
phonon coupling is not straightforwardly related to C4
symmetry breaking and produces a doping-independent

isotope shift. Also ab initio calculations do not find a
strong conventional linear electron-lattice coupling in the
cuprates21,22. We shall see that these difficulties can be
resolved if we extend our thinking to include nonlinear

electron-lattice coupling.

Fundamental grounds for emphasizing nonlinear
electron-lattice coupling emerge when O motion trans-
verse to the axis of the Cu-O-Cu bond in the CuO2 plane
(the transverse modes turn out to be the key ones) is
considered. We argue from the symmetric environment
of the Cu-O-Cu bond in cuprates that the local effect
of the transverse O motion on the electrons should be
independent of the O displacement’s sign, and hence sec-

ond order in the O displacement. Linear coupling of the
bond-transverse O modes23 should only come in as a rel-
atively long range piece depending on nonuniversal struc-
tural elements which violate inversion symmetry in the
bond axis - providing the basis for small linear coupling
as determined by ab initio methods21,22.

A strong argument can be made that the electron-
electron interaction in metallic-doped cuprates does
not cause local electron correlations negating treatment
within medium-coupling approximations such as the
LDA or RPA. A classic systematic study of electronic
spectroscopy of transition metal oxides24 showed that in
Cu (and other late transition metals) the oxygen 2p and
copper 3d levels lie close in energy25, hence the low lying
”oxide gap” excitation 2p63d9 → 2p53d10 is the excita-
tion enabling hole propagation. The oxygen 2p orbitals
are nearly empty of holes and their overlap gives rise to an
interaction-free electronic band width of several eV25, so
that the 3d↔ 2p interaction via 2p53d10 enables holes to
propagate without going through the 3d8state. The high-
lying energy of the exotic 3d8 or CuIII state, the state
of Cu involving the Hubbard 2-hole interaction U , does
not block hole transport in the metallic doping range.
Ab initio support for the absence of strong local corre-
lation in the metallic cuprates comes from considering
local corrections to LDA. While it can be argued that
U is underestimated within the gradient-corrected Lo-
cal Density Approximation to density functional theory,
an estimate of the effect of this can be made by apply-
ing the LDA+U technique26, involving a form of energy
functional embodying the local properties of the 3d shell.
This is found to have only a small effect on our results,
supporting the contention that the cuprate wavefunction
is not in fact strongly correlated. In calculations with
a Model Hamiltonian involving oxygen 2p and copper 3d

levels (e.g. Ref.27) it is common to take U = ∞, when the
hole propagation is controlled by the oxide gap, consis-
tent with Ref.24 and the foregoing discussion. Undoped
cuprates show a transition to a magnetic state involving
reduced hole motion, possibly assisted by enhanced oxy-
gen vibrational amplitude28 reducing Cu-Cu hopping, as
happens in the mean field solution described below.

A question often raised in the context of strength
of electron correlation is the presence of an incoherent
background component in ARPES29,30 in addition to
the coherent quasiparticle peak. In interpreting ARPES
incoherence, recognition of the presence of nanoscale
structure5–7 in these systems is clearly essential. The
momentum conservation central to interpreting ARPES
is compromised by the presence of nanoscale structure
(closely linked to the pseudogap in the FBM) result-
ing in momentum broadening which can lead to energy
broadening29. In fact this is precisely the interpretation
we make of the Fermi surface arc phenomenon in this pa-
per (see below), and this is supported by the link between
the loss of quasiparticle peak intensity and pseudogap30.
In addition the FBM strong electron-vibrator coupling
creates an inelastic channel for broadening the spectral
density, as has been previously proposed31, which is en-
hanced by the nearness of the Fermi surface to a sad-
dle point resulting in Marginal Fermi Liquid behavior
[8]. These two phenomena are sources of nontrivial spec-
tral lineshape in addition to Hubbard model effects. The
spectral density in the FBM needs to be calculated (in
future work) to quantify the effect.

We shall show in this paper (a) using ab initio molec-
ular dynamics that there is a strong nonlinear coupling
between electrons and the bond-transverse O vibrations,
which can be formally expressed in terms of a quan-
titatively parameterized FBM, and (b) that this cou-
pling leads to a natural explanation of C4 symmetry
breaking and of the associated pseudogap and its phe-
nomenology. Finally we show that including the long-
range Coulomb interaction (LRCI) in the FBM explains
the charge density wave (CDW) which modulates the
symmetry-breaking.

I. AB INITIO FOUNDATION OF THE FBM

The powerful technique of ab initio molecular dy-
namics (AIMD)33 solves the ionic equations of motion
on a first principles Born-Oppenheimer potential energy
(PE) surface, a conceptual step forward from the em-
pirical PE surface used in conventional MD. The ab

initio PE surface is obtained by solution of the many-
electron Schrodinger equation in local density approxi-
mation, most often augmented by gradient correction.
This technique is well suited to the present problem be-
cause it avoids the constraint of a linearized electron-
lattice interaction. We start by using AIMD to show that
the oxygens in the CuO2 plane are unstable, leading to
the observed symmetry-breaking, then identify the cause
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of the instability, which leads naturally to formulating
the FBM.

FIG. 1: ab initio Molecular Dynamics calculation at T = 4 K
of the structure of metallic La2CuO4 (214)34, blue spheres,
La, green spheres, Cu, red spheres, O. a, Undistorted setup
structure, b, Equilibrated structure showing vertical displace-
ments of the planar oxygens corresponding to rotations of
CuO6 octahedra about alternate x- and y- axes in planes
stacked along the c-axis - the LTT structure found at low
temperature in metallic 214 phases.

First we consider the the oxygen instability leading to
the well-established Low Temperature Tetragonal (LTT)
structure34 found in underdoped metallic 214 materi-
als, which was early on linked to non-linear electron lat-
tice coupling35. Figure 1 shows that the LTT structure
is indeed predicted by AIMD for metallic La2CuO4 at
T = 4 K. In a CuO2 plane the oxygens in say the
x-directed bonds are displaced, half up and half down,
along the z-axis, while in the next CuO2 plane the oxy-
gens in the y-directed bonds are displaced, etc.. Hence
each CuO2 plane breaks C4 symmetry, but the alterna-
tion of bond distortion between x- and y- directed bonds
ensures overall tetragonal symmetry.

To analyze the mechanism of the oxygen instability
we turn to the oxychloride system Ca2−xNaxCuO2Cl2,
which is computationally advantageous and whose dop-
ing can be controlled via the Na fraction x. In this sys-
tem we have calculated the oxygen potential energy (PE)
surfaces as a function of doping (see Fig. 2a). In the oxy-
chloride the AIMD calculation (see inset Fig. 2a) shows
that in contrast to the 214 material the oxygen instabil-
ity is in the xy-plane, in agreement with experiment7

(though AIMD cannot capture the experiment’s non-
Born-Oppenheimer features).

What is remarkable in Fig. 2a, supporting an electronic
origin for the oxygen instability, is that the PE surfaces
are strongly dependent on doping. At low doping the
PE minimum is off the bond axis (leading to the Fig. 2a
inset distortion), transitioning at high doping to an on-
axis minimum (stability of oxygen on the bond axis). The
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FIG. 2: (a) PE curves V (u) for oxychloride material as a
function of oxygen in-plane distortion u (see inset) for differ-
ent dopings (see labeling on curves). Inset color code, blue
spheres, Ca/Na, green, Cu, red, O. Doping is implemented
by fractional substitution of Na for Ca. (b) Breaking of the
Cu-O-Cu bond by electron addition. Since bonding ”b”and
nonbonding ”nb” levels are occupied, bond strength depends
on holes in partially-occupied antibonding ”a” level. Adding
an electron to the ”a” level will eliminate bond strength lead-
ing to off-axis PE surface minimum for oxygen atom.

AIMD results can be parameterized in the form

V (u) = (χ+ V p)
u2

2
+
w

8
u4, (1)

where u is oxygen displacement from the bond axis. In
(1) the force constant χ is negative when doping p is
zero (oxygen unstable at zero doping), while the electron-
lattice coupling V is positive, representing stabilization
of the intrinsically unstable Cu-O-Cu bond with increas-
ing hole doping. The positive quartic term w confines
the oxygen atom in the local lattice cage for the unstable
cases. Eq. (1) embodies the result that the electron-
lattice coupling in Fig. 2a goes as the square of the oxy-
gen displacement, as was argued above.

It is very helpful to interpret the ab initio results in
Fig. 2a and Eq. (1) in terms of a local chemical bonding
energy level picture. In a two-atom bond such as that in
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H2 there is a low energy bonding orbital, which is doubly
occupied, and a higher energy antibonding orbital, which
is empty. The strength of the bond is optimum with these
occupations; the bond strength would be zero if the oc-
cupations were zero, and also if both bonding and anti-
bonding levels were both occupied. In Fig. 2b, we sketch
the local chemical energy level picture for the three-atom
Cu-O-Cu σ-bond. Because there are three atoms, there
are now bonding, non-bonding, and antibonding levels.
Again if all levels are filled, the bond strength is zero.
The bonding and nonbonding levels are filled, so the bond
strength relies entirely on partial filling of the the anti-
bonding level, which in an undoped system involves only
1/2 hole per bond, i.e. the antibonding level is 3/4 filled.
This is a very weak bond and is in fact unstable, as seen
in Fig. 2a, where the energy minimum is off-axis for zero
doping. As the hole number in the antibonding orbital
is increased by doping, the bond will become stable, ex-
actly as seen in the AIMD results in Fig 2a, where the
energy minimum moves to the bond axis. Direct ab ini-
tio support for this local chemical bonding picture has
in fact been obtained in a set of calculations on linear
molecules of the type X-Cu-O-Cu-X36. In these calcu-
lations the Cu-O-Cu bond is ”doped” by the choice of
electron withdrawing/electron donating group X. Doping
with holes/electrons stabilizes/destabilizes the Cu-O-Cu
bond just as shown in Fig. 2a for a cuprate system. The
added electrons are found to go into the antibonding or-
bital, just as sketched in the chemical picture of Fig 2b.

II. DERIVATION OF THE FBM HAMILTONIAN

As we have discussed above, the Fig. 2 AIMD results
support a coupling between oxygen vibrator force con-
stant and electron occupation of the antibonding orbital.
We now give a more formal derivation of this form of cou-
pling (see Appendix A). The approach requires a model.
We start from the 3-band Emery tight-binding model
based on Cu 3dx2−y2 and the oxygen 2px/2py orbitals
that have σ symmetry in the Cu-O-Cu bond (see Fig.
3). The key parameters in the 3-band model are the pd
hopping matrix elements tpd, and the p to d energy gap
ǫpd > 0. In this paper we work with the more tractable
and widely used 1-band model25 rather than the 3-band
model. The basis set in the 1-band model consists of a
single 3dx2−y2 orbital per Cu atom located at site i on
the square Cu Bravais lattice in the CuO2 plane.

A projection procedure (Appendix A) enables approx-
imate passage from the 3-band to the 1-band model,
which becomes

H̃d =
∑

i,σ

ǫdniσ −
∑

〈i,j〉,σ

t2pijd

ǫpijd

(
c+i,σcj,σ + c+j,σci,σ

)
(2)

+
∑

〈i,j〉,σ

t2pijd

ǫpijd
(niσ + njσ) ,

tpd

2px

2py

3dx2-y2

FIG. 3: 2px, 2py and 3dx2
−y2 orbitals in CuO2 plane, illus-

trating 2p to 3d hopping integral tpd.

(here c+i,σ (ci,σ) is the creation (destruction) operator for
the 3dx2−y2 orbital of spin σ on site i, with number opera-

tors ni,σ = c+i,σci,σ, and ǫd is the 3dx2−y2 orbital energy).

A sum over 〈ij〉 implies that each nearest-neighbor bond
ij appears only once in the sum. In (2) the 3-band model
parameters tpd, and ǫpd have been made bond-dependent.

The key physical content is seen in the second term
of (2). This term describes a superexchange hopping t
between nearest-neighbor Cu atoms i and j driven by
electrons hopping from i to the intermediate p-orbital
via tpd and then from the intermediate p-orbital to j via
another tpd matrix element (and the reverse). There is
also an energy shift in the 3dx2−y2 orbitals (third term
in (2)) due to the process where after reaching the inter-
mediate p-orbital from i an electron hops back again to
i instead of going on to j.

A vibrational displacement u of the oxygen, typically
transverse to the Cu-O-Cu bond axis, will modify the
pd hopping matrix elements tpd. The modification will
tend to reduce the pd overlap, hence will be of the form
(taking tpd > 0, as in Fig. 3)

tpd → tpd − vpdu
2, where vpd > 0. (3)

Inserting this approximation into (2), and expanding only
as far as the second order in u we obtain the nonlinear
electron-vibrator coupling model

H̃d = ǫ′d
∑

i,σ

niσ − t
∑

〈i,j〉,σ

(
c+i,σcj,σ + c+j,σci,σ

)
(4)

− v

2
√

2

∑

〈i,j〉,σ

(
(niσ + njσ) −

(
c+i,σcj,σ + c+j,σci,σ

))
u2

ij ,

where ǫ′d = ǫd + 2t (the trivial shift 2t in the d-orbital
energy will subsequently be ignored), t = t2pd/ǫpd is the
1-band tight binding hopping matrix element, and the
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electron-vibrator coupling matrix element v is defined
by v/2

√
2 = 2tpdvpd/ǫpd

11 (in this paper we define the
vibrator and electron spin degeneracies as 1 and 2 re-
spectively). The coupling v is seen to be positive. Our
original empirical model11 contained only the hopping
terms in the coupling, and missed the number operator
terms (we shall see that this modification has little effect
on a uniform pseudogap). Note that a similar electron-
vibrator coupling term occurs if the coupling originates
from ǫpd (see Appendix A), instead of from tpd (as in Eq.
(3)).

A neat way to express the nonlinear electron-vibrator
coupling term is to introduce the antibonding orbital
[ci,σ − cj,σ] /

√
2 for the ij bond. The number operator

for this bond, summed over spin, is defined as Qij

Qij =
∑

σ

(
[ci,σ − cj,σ]√

2

)+(
[ci,σ − cj,σ]√

2

)
(5)

=
1

2

∑

σ

(
(niσ + njσ) −

(
c+i,σcj,σ + c+j,σci,σ

))
,

and is seen to be the electronic factor in the coupling
term in (4), which can now be written compactly as

H̃d = ǫ′d
∑

i,σ

niσ − t
∑

〈i,j〉,σ

(
c+i,σcj,σ + c+j,σci,σ

)
(6)

− v√
2

∑

〈i,j〉

Qiju
2
ij .

Some further additions are required in order to arrive
at a complete and realistic FBM Hamiltonian (see Ap-
pendix B). The nonlinear coupling in (6) can in principle
have the effect of deconfining the vibrating oxygen (giv-
ing it a parabolic convex-downwards PE surface). The
ab initio PE curves in Fig. 2a and Eq. (1) show that the
oxygen vibrator is in fact confined by a quartic-type po-
tential, which therefore needs to be included, as it models
exchange repulsion. We also need to add the standard ki-
netic energy and parabolic potential energy terms for the
vibrator. The electronic Hamiltonian also needs refining
by including next nearest hopping terms t′ and next-next
nearest neighbor terms t′′ (t′ is especially important as it
sets the doping where the van Hove singularity peak in
the DOS is located at the Fermi level).

The resulting FBM Hamiltonian Eq. (7) (see Ap-
pendix B) is written in mixed representation electroni-
cally,

H =
∑

k,σ

ǫknk,σ +
∑

〈i,j〉

[
p2

ij

2M
+
χ0

2
u2

ij

]
(7)

+
w

8

∑

〈i,j〉

u4
ij −

v√
2

∑

〈i,j〉

Qiju
2
ij .

In Equation (7), c+k,σ (ck,σ) are the creation (destruction)
operators for the band states of wavevector k, obtained
by diagonalizing the tight binding model with the hop-
ping matrix elements t, t′, and t′′, and nk,σ = c+k,σck,σ is

the corresponding number operator. The variables pij ,
uij are the conjugate momentum and position coordi-
nates of oxygen in bond ij, M is oxygen mass and χ0

the bare oxygen force constant. An Einstein model is
assumed, so inter-vibrator interactions are ignored. w
is the quartic interaction and v the (positive) electron-
vibrator coupling constant. There is a characteristic cou-
pling energy K = v2/w in the model, related to the pair-
ing energy11. In Appendix C we give a simple extension
of the standard ”two cannon balls on a mattress” model
for electron-phonon coupling induced pairing, comparing
the total energy for 2 electrons localized in a Cu-O-Cu
bond with the energy for localization in two separate Cu-
O-Cu bonds, to show that the local bond-pairing energy
is 2K (form factors appearing in the k-space treatment
of d-wave pairing modify the coefficient of K).

The coupling term (last term) in Eq.(7) can be inter-
preted in terms of the Fig. 2b chemical picture, it states
that if we increase the occupation Qij of the antibonding
orbital in bond ij (see Eq. (5)) then the Cu-O-Cu bond
ij is softened. Looking at the hopping terms within Qij

in (5), then it is seen that increasing the vibrational am-
plitude in bond ij changes the nearest-neighbor hopping
term so as to reduce the effective hopping |t| (see (6)) in
bond ij.

The remaining terms in Eq.(7) are as follows. The
first term is the electronic band energy. The second term
represents the harmonic part of the oxygen vibrational
Hamiltonian, to which is added the third term, a quar-
tic interaction needed to confine the oxygen and derived
from the PE curves in Fig 2a. The Hamiltonian Eq.(7),
termed FBMII, differs from the original FBM model11

(now termed FBMI) in the presence of the number op-
erator terms in Qij (Eq. (5)), and, as we shall now see,
in having the key parameters determined from ab initio
calculations.

Table I: FBM Parameters for 214 and Oxychloride Materials

Parameter vib. xy ⊥ to bond vib. z ⊥ to bond

v214 (au) 0.016 0.017

voxy (au) 0.018 0.020

w214 (au) 0.053 0.122

woxy (au) 0.090 0.106

8K214 (eV) 1.12 0.54

8Koxy (eV) 0.80 0.83

The FBM nonlinear electron-vibrator coupling is espe-
cially effective at the high-density of states saddle points
at X= (π, 0) and Y= (0, π) in the band structure. The
energies at X and Y are normally degenerate, but the
degeneracy is split if the vibrational amplitudes u for the
oxygens in x-directed bonds are not the same as the am-
plitudes in y-directed bonds (see Fig. 4a). This splitting
can be used to determine the bare electron-lattice cou-
pling constant v in Eq. (7) by displacing the x-oxygens
and calculating the shift in the band structure eigenvalue
at X. Any effect of a global chemical potential shift due
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to displacing the x-oxygens can be removed by displac-
ing the y-oxygens and subtracting the y-induced shift
at X from the x-induced shift. In Appendix D we dis-
cuss in more detail how the shift in band structure en-
ergy eigenvalues ǫk at the saddle points X and Y as a
result of displacing the oxygens can be used to deter-
mine the coupling constant v. The results are collected
in Table I for the 214 and oxychloride materials. The
values of the quartic interaction w are obtained from the
quartic coefficient of the fit to the Fig. 2a curves, and
similar ones for the 214 material. It is found that the
coupling v is relatively small for vibrational polarization
along the Cu-O-Cu bond, so we only considered polariza-
tions transverse to the bond in Table I. Repeating this
calculation with the U -facility in the Quantum Espresso
code enabled did not significantly change the results, a
finding which suggests that the FBM couplings are not
an artefact of neglecting electron correlation effects.

The lower section Table I shows the coupling strength
K = v2/w in the FBM, which will be discussed further
below. We now turn to the pseudogap results obtainable
from the FBM at the mean field level.

III. C4 SYMMETRY BREAKING AND THE

PSEUDOGAP

A mean field approximation to a new Hamiltonian is
often found to yield valuable insights. The nonlinear
form of coupling in the FBM Eq.(7) lends itself to an
unusual form of mean field theory where u2

ij can be re-

placed by its expectation value
〈
u2

ij

〉
. The details of

this mean field theory are supplied in Appendix E, and
the essentials are described as follows. When u2

ij is re-

placed by its expectation value
〈
u2

ij

〉
the coupling term

becomes v
〈
u2

ij

〉 (
c+i,σcj,σ + c+j,σci,σ

)
/2

√
2, locally modi-

fying the nearest neighbor hopping t, which appears in
the one-electron Hamiltonian −t

(
c+i,σcj,σ + c+j,σci,σ

)
, to

t →
(
t− v

〈
u2

ij

〉
/2

√
2
)
, decreasing the hopping strength

since v > 0.
Moreover, if the vibrational amplitude

〈
u2

ij

〉
were to

differ between x- and y-directed bonds the nearest neigh-
bor hopping t would also differ, becoming say tx and ty
respectively. Now the saddle point energies ǫX and ǫY
are given by

ǫX = −2(−tx + ty) + 4t′ − 4t′′, (8)

ǫY = −2(tx − ty) + 4t′ − 4t′′,

so the energies of the saddle points are split by ǫX −
ǫY = 4(tx − ty). Splitting the saddle points splits the
van Hove singularity37,38 in the density of states (DOS)
(see Fig. 4a) which leads to a Peierls-like mechanism for
creating the vibrational amplitude asymmetry in

〈
u2

ij

〉

self-consistently. This is the underlying process which
leads to C4 symmetry-breaking and to the pseudogap in
the FBM.
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oriented (red) and y-oriented (violet) bonds.The vHs peak
above the Fermi level (violet) is for the lower vibrational
amplitude oxygen, and the peak below the Fermi level (red)
is for the higher vibrational amplitude oxygen. For details,
see Appendix A (b) Contour map of pseudogap in temper-
ature/doping plane showing decrease with doping, and with
temperature, until it vanishes at phase boundary T ∗. Con-
tours labeled by pseudogap ∆ps in intervals of 13.75 meV.
For experimental ∆ps magnitudes see Ref.42.

Applying mean field to the model Eq.(7) (Appendix
E), we then expand the coupling term into two possible
decouplings (a) Qiju

2
ij → Qij

〈
u2

ij

〉
, with consequences

just discussed, and (b) Qiju
2
ij → 〈Qij〉u2

ij , leading to a
softening of the vibrator proportional to the number of
antibonding electrons 〈Qij〉 in the bond (the Fig. 2a, 2b
effect). Here for the moment we assume for simplicity
that the mean field solution is translationally invariant,
when the decoupling breaks the problem into two ex-
actly soluble pieces. The (a) decoupling leads to a band
structure problem which is solved to give the expectation
value 〈Qij〉, which can be fed into (b) to give the soft-
ened vibrator frequency. The solution to the anharmonic
oscillator problem posed by Eq.(7) with the decoupling
(b) is done by expanding in a harmonic oscillator basis,
leading to a value of

〈
u2

ij

〉
to be fed back into (a). The

mean field quantities 〈Qij〉 and
〈
u2

ij

〉
, are solved for self-
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consistently, further details are provided in Appendix E.

FIG. 5: Inset: two FS’s for opposite sign of C4-splitting
phase (∆ps = 74 meV). θ = 0 and θ = π are de-
fined in the context of the order parameter ∆ps (k) ∼

∆ps cos θ (cos kx − cos ky) /2 (see text). Colored area indi-
cates approximate loss of definition of FS due to CDW. Main
panel: Plot of FS arc length vs. temperature compared with
experiment (see text).

At high temperatures the lowest free energy solution
to the mean field equations preserves C4 symmetry. But
in the underdoped region, below a characteristic temper-
ature T ∗, the symmetric solution is a free energy maxi-
mum and a pair of C4 symmetry breaking solutions, with
different expectation values 〈Qij〉 and

〈
u2

ij

〉
in the x- and

y-directed bonds (Fig. 4a), have lower free energy.
The FBM predicts the C4 symmetry breaking in the

oxygen vibrator amplitudes
〈
u2

ij

〉
is the effect detected

in the low-temperature STM R-plots (R is the ratio of
electron to hole currents) of Ref.7 - a key experiment in
understanding cuprate physics. The STM experiment
on the tunneling current into specific planar oxygens
electronically detects the splitting in the van Hove sin-
gularities illustrated in Fig. 4a and in Eq. (8), and
simultaneously observes the C4 splitting in the vibra-
tional amplitude of these oxygens. Hence the experi-
ment provides a direct critique of the interpretation of
C4 symmetry-breaking in the FBM. The details of the
experimental observation and its FBM interpretation are
discussed in Appendix F. The FBM predicts that in the
C4 symmetry-broken state the higher/lower-amplitude
oxygens have filled/empty DOS peaks (Fig. 4a). Hence
the higher/lower-amplitude oxygens should show as dark
streaks/light spots in the R-plots, exactly as observed.

C4 symmetry breaking in the electronic structure leads
to a d-type PG ∆ps (k) ∼ ∆ps (cos kx − cos ky) /2 (see
Appendix E (E4)), where the PG, ∆ps, can be positive
or negative in sign. The degeneracy of the saddle points

at X= (π, 0) and Y= (0, π) is split by twice the PG, 2∆ps

(see Fig. 4a and Eq. (8)).
The critical condition for the existence of the C4 sym-

metry breaking, and hence for the existence of the pseu-
dogap, is derived by linearizing the mean field treatment
so as to obtain the conditions for instability. This anal-
ysis is detailed in Appendix G, yielding Eq. (G48). The
condition can be shown to be approximately equivalent
under practical conditions to

8Kρ (ǫF ) & 1, (9)

where ρ (ǫF ) is the density of states at the Fermi level.
The quantity 8K can be taken as the mean field coupling
energy in the FBMII. The values of 8K derived from the
AIMD calculations are illustrated in Table I, and are of
order 1 eV. The density of states at the Fermi level is
somewhat larger than 1 eV−1 for practical doping levels,
so that the pseudogap is indeed predicted to exist in the
mean field theory of the FBM11.

The FBM phase diagram for the PG is shown in
Fig. 4b. The mean field result reproduces the main
experimental features of the pseudogap. Daou et al.4

show that the temperature boundary T ∗ of the PG is
indeed coincident with the temperature boundary of the
C4 splitting, as the FBM predicts. In spatially inhomo-
geneous samples the spatial boundary of the PG is found
to be coincident with the spatial boundary of the C4
splitting5, again as the FBM predicts. The temperature
and doping dependence of the PG seen in Fig. 4b is in
reasonable agreement with experiment: at low temper-
ature the pseudogap ranges from a maximum of about
∆ps = 100meV on the underdoped side, decreasing
with increasing doping5,39–42, while T ∗ is of about the
right magnitude with the correct trend as a function of
doping1. Note that these results are essentially the same
in FBMI and FBMII, apart from the doping dependence
introduced by the FBM II charge terms into Eq. (E1).

IV. THE CDW AND FERMI SURFACE ARCS

So far we have assumed spatial uniformity of the mean
field vibrational amplitude and pseudogap. What is the
origin of the spatial oscillation of the C4 splitting in the
oxygen vibrator amplitudes, which is observed to have
a wavelength of approximately ≃ 4 unit cells7. The ob-
served spatial oscillation must strongly impact the C4
symmetry breaking in the electronic structure viewed in
k-space and hence spectroscopic observations of the PG.

In a further development of the model, we show in Ap-
pendix G that when the long range interaction between
the oxygen charges in the CuO2 plane oxygens is included
- an enhancement of the model we term FBMIII - then
the FBM has a natural spatial charge oscillation or CDW.
The new long range Coulomb piece is not important as
long as only spatially uniform mean field quantities are
being considered, but it becomes significant when spa-
tially nonuniform mean field quantities are introduced.
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An order of magnitude for the CDW wavevector qCDW

derived in Appendix G is

q2CDW &
4πe2

ǫvcK
, (10)

where e is electronic charge, ǫ is the background dielectric
constant, and vc is the unit cell volume. With ǫ ≃ 15 Eq.
(10) gives ≃ 1.7 unit cells for the CDW wavelength.

The presence of the CDW is likely to disrupt the as-
sumed spatially uniform value for the C4 splitting, since
both CDW and C4 splitting involve charge displacements
on planar oxygens and are mutually coupled. A C4 split-
ting wave locked into the CDW is then likely to occur.
The C4 splitting amplitude is expected to be optimum at
some value of local charge, but the C4 splitting phase at
that point can have either sign. Hence according to this
argument the C4 splitting wavelength is 2× the CDW
wavelength. If the C4 splitting oscillation locks into the
CDW at 2× the CDW wavelength, then (10) is consistent
with the C4 splitting wavelength being ≃ 4 unit cells.

The spatial oscillation of the C4 splitting implies
that the sign of ∆ps will vary spatially with distance
x parallel to the CDW wavevector qCDW , in a man-
ner ∆ps (k) ∼ ∆ps cos (θ) (cos kx − cos ky) /2, where θ =
qCDWx/2. The Fermi surface in the C4 split phase will be
sensitive to the sign of ∆ps, and hence to the phase θ. The
inset in Fig. 5 shows the two FS corresponding to the lim-
iting cases θ = (2n+ 1)π and θ = 2nπ (n = integer), and
it is reasonable to assume that a nanoscopically varying
order parameter will lead to FS smearing between these
limits as illustrated by the shaded region in the Fig. 5 in-
set. A further source of spectroscopic incoherence is that
the spatial oscillation of the C4 splitting is not coherent,
but broken into the nematic phase domains7, which has
been interpreted as an effect of the nonuniform dopant
distribution10.

The splitting of the saddle point energies by 2∆ps

moves spectral density away from the Fermi energy (see
Fig. 4), due to the spatial oscillation and nematic-phase
incoherence of the C4 splitting the rearrangement of spec-
tral density generates a pseudogap. A loss of superfluid
density in the superconducting phase in a range of su-
perconductors is also associated with the loss of spatial
order43.

In k-space the smearing of the FS by the PG, seen
in the Fig. 5 inset, is seen to be zero at the nodal line
kx = ky , a manifestation of the d-type nature of the PG
∆ps (k), and to increase as one goes towards the SP’s
at X and Y. How much of the FS is resolvable will then
depend on the energy window, a narrow energy window
will see only the arc of the FS close to the node, whilst
a wider energy window will see a more extended section
of FS arc. More quantitatively, if we make a measure-
ment on some energy scale E, it is to be expected that
the FS arc will be well-defined for k-points whose local
PG is less than E, ∆ps (k) < E, but that the arc will be
smeared out on energy scales where the local PG is larger
than E, ∆ps (k) > E. A heuristic approach is to take the

energy scale E as the temperature itself, E = kBT , ac-
cording to which approach there should be a boundary
between the resolvable and unresolvable sections of the
FS arc defined by ∆ps (k) = kBT , a FS arc effect that
has already been observed44,45. Comparison of the data
with our heuristic model in Fig. 5 is in good agreement
with experiment45, especially in the low-T regime, which
we report as a reasonable proof of concept but not yet
a rigorously quantitative theory. Further understanding
requires calculation of the Marginal Fermi Liquid life-
time broadening32 for the FBM, enabling calculation of
spectral lineshapes.

The ab initio calculations we have done show that
there is an underlying instability of the CuO2 plane oxy-
gens in HTS which results in the phenomenon of C4
symmetry breaking. Based on the ab initio calcula-
tions we derive an enhanced version of the FBM, with
realistically-estimated parameters. The mean field the-
ory of the FBM shows that C4 symmetry breaking is the
underlying cause of the pseudogap, as also found by re-
cent complementary experiments. The FBM is able to
give a picture of the pseudogap phenomenology includ-
ing features such as T ∗, the doping dependence of the
pseudogap, and Fermi surface arcs which are all in agree-
ment with experiment. Including our previous success in
explaining the superconductivity and doping-dependent
isotope shift, we believe that the FBM approach has solid
achievements in explaining the main nonmagnetic phe-
nomena in the cuprate high temperature superconduc-
tors.
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Appendix A: Derivation of the FBMII Coupling

In matrix notation consider a d-subspace and a p-
subspace, represented by the Hamiltonians Hd and Hp

respectively, connected by the coupling matrix V pd, the
Hamiltonian then being,

H =

[
Hd V dp

V pd Hp

]
. (A1)

Projecting onto the d-subspace in perturbation theory

H̃d = Hd + V dp (ǫd −Hp)
−1
V pd. (A2)

if i, j are d-sites, and l,m are p-orbitals

H̃d
ij = ǫdδij +

∑

l,m

V dp
il (ǫd −Hp)

−1
lm V pd

mj . (A3)
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Now we shall neglect the pp hopping matrix elements
(Emery model), when l = m and the V ’s are nearest-
neighbor hopping matrix elements defined as tpd > 0 (see
Fig. 3). There are 2 processes,

1. i, j nearest neighbor 〈i, j〉 on the d-lattice, when
the 2 V ’s have opposite sign (Fig. 3)

2. i = j, when the 2 V ’s have same sign

giving

H̃d =
∑

i,σ

ǫdniσ +
∑

〈i,j〉,σ

t2pijd

ǫpijd
(niσ + njσ) (A4)

−
∑

〈i,j〉

t2pijd

ǫpijd
Xij ,

where ǫpd = ǫd − ǫp > 0 is the ”oxide gap” between the
oxygen 2p orbital energy and the higher-lying Cu 3dx2−y2

orbital energy, σ is spin, pij is the p-orbital between d-
sites i and j, and the bond order operator Xij is

Xij =
∑

σ

(
c+iσcjσ + c+jσciσ

)
. (A5)

Let us assume that the oxygen motion in some direc-
tion is x, and that it enters the 3-band Hamiltonian via
the pd hopping integral

tpd → tpd − vpdx
2, where vpd > 0, (A6)

then to order vpd, and defining t = t2pd/ǫpd

H̃d = (ǫd + 2t)
∑

i,σ

niσ − t
∑

〈i,j〉

Xij (A7)

− 2tpdvpd

ǫpd

∑

〈i,j〉,σ

(niσ + njσ)x2
ij

+
2tpdvpd

ǫpd

∑

〈i,j〉

Xijx
2
ij .

Restoring our original notation11 2tpdvpd/ǫpd =
v/2

√
nns (n is the degeneracy of the vibrational mode,

and ns is the degeneracy of the fermions, in practice
n = ns = 2), when the coupling v is seen to be posi-

tive

H̃d = (ǫd + 2t)
∑

i,σ

niσ − t
∑

〈i,j〉

Xij (A8)

− v

2
√
nns

∑

〈i,j〉,σ

(niσ + njσ) x2
ij

+
v

2
√
nns

∑

〈i,j〉

Xijx
2
ij .

We retrieve our previous 1-band model (next-nearest
and next-next-nearest neighbor hoppings are dropped

due to neglect of tpp), but with an extra term diago-
nal in d-space. As regards the vibrator, the effect of the
new term is to stiffen the vibrator with increasing hole
occupation. In this respect the number operator term is
dominant over the hopping term (maximizes at ≃ 0.6).

Let us now alternatively assume that the oxygen mo-
tion enters the 3-band Hamiltonian through the interac-
tion of the electrostatic potential with the charge on the
oxygen

ǫpd → ǫpd + vpx
2; (A9)

where vp depends on a Madelung sum. In an ionic crystal
it is arguable that the sign of vp will be positive since
the environment of a negative ion typically consists of
positive ions, so as the O-ion approaches them the local
oxide gap ǫpd becomes larger. However in a perovskite
structure the issue needs specific calculation.

Expanding to first order

1

ǫpd + vpx2
=

1

ǫpd
− vpx

2

ǫ2pd

. (A10)

Returning to Eq. (A4), we insert the foregoing expansion
into the 2 terms to obtain

∆H̃d → − tvp

ǫpd

∑

〈i,j〉

(niσ + njσ)x2
ij (A11)

+
tvp

ǫpd

∑

〈i,j〉

Xijx
2
ij .

The effect of the oscillator correction (A11) from this
mechanism can be absorbed into (A8), giving the same
final result (A8) but with

v

2
√
nns

= (2tpdvpd + tvp) /ǫpd. (A12)

The sign of v will be positive if the tpdvpd term in paren-
thesis is dominant, or if vp is positive as argued above.

In this section we have formally derived the FBM cou-
pling, showing the approximations involved explicitly,
and demonstrated the existence of a new term in the
coupling, extending the initial FBM11, termed FBMI, to
the model including charge coupling, the FBMII.

Appendix B: The Complete FBMII Hamiltonian

The FBMII Hamiltonian involves three pieces

H = Hv +He +Hev. (B1)

In H the Cu sites, which define the unit cell, are defined
as 2D integral-component vectors i = (ix, iy) (lattice con-
stant is taken as unity). The two oxygens in each unit
cell i are located at the sites i+α̂/2, where α̂ is a unit
vector along the x- or y- axes, hence α̂ defines whether
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the oxygen is in a Cu-O-Cu bond oriented along the x-
or y- direction.

In the vibrator piece Hv the oxygen degree of freedom
is an n-component vector xi+bα/2, where n = 1 if a single
mode is dominant (as assumed in the manuscript), n = 2
if the two modes transverse to the Cu-O-Cu bond are
roughly equivalent, or in a case now considered unlikely
(as the along-bond mode is found to be weakly coupled)
n = 3 if the two transverse modes and the along-bond
mode can all be considered equivalent. Hv is given by

Hv =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

χ0

2
x2
i+bα/2 +

w

8n

(
x2
i+bα/2

)2
]
.

(B2)
In Hv the scalar products xi+bα/2 · xi+bα/2 are abbrevi-

ated to x2
i+bα/2, and a momentum pi+bα/2 conjugate to

coordinate xi+bα/2 is introduced, to define the vibrator
kinetic energy, with m the oxygen mass (M in the Ms.).
The ”bare” bond force constant is χ0. The quartic term,
with coefficient w, is assumed in the degenerate case to
be radially (n = 2) or spherically (n = 3) symmetric.

The electronic piece He is

He = −1

2

∑

i,j,σ

t (i − j) c+i,σcj,σ, (B3)

where c+i,σ(ci,σ) denote respectively the creation (destruc-

tion) operators for the 3dx2−y2 orbital (or, more rigor-
ously, the dx2−y2-type Cu3d-O2p antibonding Wannier
function) on lattice site i of spin σ. The strongest inter-
action is the nearest neighbor hopping integral t(±1, 0) =
t(0,±1) = t, (t is positive), followed by the next-nearest
neighbor interaction t(±1,±1) = t′, (t′ is negative) and
then the 3rd-nearest neighbor interaction t(±2, 0) =
t(0,±2) = t′′ (t′′ is positive). The band eigenvalues ǫk of
(B3) are

ǫk = −2t(coskx + cos ky) − 4t′ cos kx cos ky (B4)

− 2t′′(cos 2kx + cos 2ky).

The model band structure has a minimum at Γ (k =
(0, 0)), a maximum at Z (k = (π, π)), and saddle points
(SP) at X (k = (0, π)), and Y (k = (π, 0)). As a result
of the saddle points, located at ǫSP = 4t′ − 4t′′, the den-
sity of states (DOS) has a logarithmic peak (van Hove
singularity or vHs) at ǫSP which is found from ARPES
and band structure calculations for near-optimally doped
systems to lie close to the Fermi level25,46 - the resulting
high DOS at the Fermi level strongly enhances the FBM
coupling. The total band width is 8t.

The electron-vibrator coupling piece is

Hev =
−v

2
√
nns

y∑

i,α=x

x2
i+bα/2 (B5)

×
[
∑

σ

(
ni,σ + n

i+bα,σ

)
−Xi+bα/2

]
;

Xi+bα/2 =
∑

σ

(
c+i,σci+bα,σ + c+

i+bα,σci,σ

)
, (B6)

where the bond order operator X is associated with the
oxygen site at the bond center, and we have defined in

the mixed degeneracy factor (nns)
−1/2

, where ns = 2 is
the spin degeneracy, to make the term of order

√
nns,

motivated by a version of large-N theory jointly expand-
ing in 1/n and 1/ns

11. In Ref.11 only the X-piece of (B5)
was included, a level termed FBMI.

The combination
∑

σ

(
ni,σ + n

i+bα,σ

)
−Xi+bα/2 can also

be written in more compact form, defining the antibond-
ing orbital |a, i+α̂/2〉 = (|i〉 − |i+α̂〉) /

√
2, with num-

ber operator (summing over spin) denoted Qi+bα/2 =∑
σ c

+
a,i+bα/2,σca,i+bα/2,σ.

1

2

(
∑

σ

(ni,σ + ni+bα,σ) −Xi+bα/2

)
= Qi+bα/2. (B7)

The complete Hamiltonian H = Hv +He+Hev is then

H =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

χ0

2
x2
i+bα/2 +

w

8n

(
x2
i+bα/2

)2
]

(B8)

− 1

2

∑

i,j,σ

t (i − j) c+i,σcj,σ

− v√
nns

y∑

i,α=x

x2
i+bα/2Qi+bα/2.

Note that in Eq.(B8) K = v2/w defines a coupling en-
ergy.

Appendix C: Local Estimate of Pairing Strength

A model often used to explain the phonon-induced
pairing attraction in conventional linear phonon coupling
is the ”two cannon balls on a mattress model” - the en-
ergy lowering when two cannon balls together sink into
the mattress is larger than the sum of the energies of the
cannon balls separately sinking in. Hence they have a
pairing tendency due to their cannon ball-mattress inter-
action. Here we give a simple classical extension of this
picture to the nonlinear FBM situation, enabling us to
derive an estimate of the pairing energy.

Consider the energy of a single Cu-O-Cu bond with
only one vibrational mode (n = 1) x, having the Potential
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energy (PE)

V (x) =
χ0

2
x2 +

w

8
x4 − v√

ns
x2Q. (C1)

We treat the vibrational degree of freedom x as classical.
Minimizing the PE w.r.t. x2, we obtain

x2
min =

4

w

(
v√
ns
Q− χ0

2

)
, (C2)

and inserting back into (C1) we get for the minimum
energy

Emin = − 2

w

(
v√
ns
Q− χ0

2

)2

. (C3)

This is minimum PE of a bond when its electronic state
is defined by the good quantum number Q.

In the FBMII we consider the 2-particle state of a bond
as the paired state, with Q = 2, (plus one empty bond),
and the unpaired state as two bonds each with Q = 1.
The pairing energy is then

Epair = − 2

w

(
−χ0

2

)2

− 2

w

(
v√
ns

2 − χ0

2

)2

(C4)

+
4

w

(
v√
ns

− χ0

2

)2

= −4
v2

wns
(C5)

From this we conclude that the pairing energy is Epair ≃
−2v2/w = −2K, i.e. v should be large, w small for strong
pairing.

Suppose we apply this same argument to the FBMI
model, where the charge term is absent fromQ which now
becomes Q =

∑
σ (nb,σ − na,σ) /2, where b and a denote

bonding and antibonding orbitals respectively. Now for
the paired state Q = 1, while for the singly occupied
state Q = 1/2. Now

Epair = − 2

w

(
−χ0

2

)2

− 2

w

(
v√
ns

− χ0

2

)2

(C6)

+
4

w

(
v√
ns

1

2
− χ0

2

)2

= − v2

wns
. (C7)

The pairing energy is Epair ≃ −v2/2w = −K/2. Hence
in this analysis the FBMI has only 1/4 of the pairing
strength of the FBMII.

Appendix D: Determination of Coupling v

Calculation of the oxygen PE surface as a function of
doping is not an ideal approach to calculation the FBM

coupling constant. The coupling in the FBM Hamilto-
nian is to the number of electrons Q in the antibonding
orbital, which mainly involves states at the top of the d-
band and will be filled mainly by adding electrons rather
than, on the contrary, holes as was done (for reasons of
computational stability) in Fig. 2 of the Ms..

The method adopted to calculate the coupling strength
v is based on comparing the shift in band structure en-
ergies when the oxygen location is perturbed with the
same shift deduced from the FBM Hamiltonian. The
FBM coupling (third term in Eq.(B8)) leads to splittings
in the tight-binding band structure. If all oxygens in the
x-oriented bonds are globally shifted by ux, and all oxy-
gens in the y-oriented bonds by uy, there is a splitting
of the band energy between the band energy ǫX at the
saddle point (SP) X= (π, 0), and ǫY at Y= (0, π), given

by ǫX−ǫY =
√

2/nv
(
u2

x − u2
y

)
. By numerically calculat-

ing the band structure with first the x-oxygens displaced,
and then the y-oxygens, and subtracting the correspond-
ing band structure energies energies at, say, the SP X,
any isotropic shift resulting from displacing a single oxy-
gen can be canceled out and the coupling v determined.
The results are shown in Table I.

Appendix E: Mean Field Approximation

Mean field theory is a useful step in investigating the
properties of many models. In the FBM, the mean field
approximation decouples the electronic and vibrational
parts of the Hamiltonian. In the vibrational part, an
expectation value of the electronic terms shifts the os-
cillator harmonic frequency, the expectation value being
assumed spatially uniform, but it can be different in the
x- and y- bonds (in this section we return to the notation
in the Ms.):

Hvib =
∑

〈i,j〉

p2
ij

2M
+

1

2

∑

〈i,j〉

χ0u
2
ij +

w

8

∑

〈i,j〉

u4
ij (E1)

+
v

2
√

2

∑

〈i,j〉,σ

(
2 − 2p+

〈
c+i,σcj,σ + c+j,σci,σ

〉)
u2

ij .

Hvib can easily be diagonalized in a harmonic oscillator
basis. In the electronic part, the expectation value of the
square of the oscillator amplitude has been taken,

Hel =
∑

k,σ

ǫknk,σ +
v

2
√

2

∑

〈i,j〉,σ

[
c+i,σcj,σ + c+j,σci,σ

] 〈
u2

ij

〉
,

(E2)
giving a band structure problem in which
there are new nearest-neighbor hopping terms(
v/2

√
2
) [
c+i,σcj,σ + c+j,σci,σ

] 〈
u2

ij

〉
(the uniform shift

represented by the number operator terms does not
change the band structure and is omitted) with the
effect of reducing the nearest-neighbor hopping inte-
gral. Allowing the oscillator amplitude squared for
the x-directed

〈
u2

ij

〉
x

and y-directed
〈
u2

ij

〉
y

bonds to
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be unequal (the C4 symmetry-split case), the band
structure is changed to

ǫ̃k = ǫk +
v√
2

〈
u2

ij

〉
x

cos kx +
v√
2

〈
u2

ij

〉
y
cos ky. (E3)

Using the band structure ǫ̃k (E3) the expectation
values

〈
c+i,σcj,σ + c+j,σci,σ

〉
for x-oriented and y-oriented

bonds are calculated, hence defining two quartic Hamil-
tonians (E1) whose exact solution yields the squared vi-
brator amplitudes

〈
u2

ij

〉
x

and
〈
u2

ij

〉
y
. These intercon-

nected electronic and quartic problems are then solved
self-consistently as regards the expectation values. The
parameters used were similar to Table I, v = 0.0198 au,
w = 0.085 au, the oscillator bare force constant was
χ0 = −0.0225 au. The band structure is parametrized
by the (negative of the) hopping matrix elements, the
nearest-neighbor hopping matrix element t = 0.25 eV,
next-nearest-neighbor hopping m.e. t′ = −0.05 eV, and
third next-nearest-neighbor hopping m.e. t′′ = 27.2 meV.

We can rewrite the effective band structure as

ǫ̃k = ǫk +
1

2
∆ps (cos kx − cos ky) , (E4)

where ∆ps =
(
v/

√
2
) (〈

u2
ij

〉
x
−
〈
u2

ij

〉
y

)
is the pseu-

dogap, and the renormalized nearest-neighbor hopping(
v/2

√
2
) (〈

u2
ij

〉
x

+
〈
u2

ij

〉
y

)
is absorbed into ǫk. The ex-

perimental data7 show that the pseudogap is not uni-
form over the sample as we have, for simplicity, assumed,
but the coherence length over which the sign of ∆0

ps

varies is quite short, only a few lattice spacings. Proba-
bly as a result of this nanoscopic domain structure, the
phase boundary of the pseudogap region is not typically
found experimentally to constitute a true, sharp, phase
boundary1.

The variation of pseudogap with doping at low tem-
perature seen in the contour plot (Fig. 4b) is similar to
that seen in experimental data42.

Appendix F: Intensity Variation in Experimental

R-plots

In order to model the experimental behavior in the
STM experiments7 on C4 symmetry-split systems, we

calculated the projected DOS for a 3-band model with
the basis of oxygen 2px and 2py orbitals and Cu 3dx2−y2

orbitals shown in Fig. 3. The pdσ hopping matrix el-
ement is tpd = 1.12 eV. There are pp hopping matrix
elements between nearest-neighbor 2px and 2py orbitals
given by tpp = −0.528 eV, and an oxide gap ǫd − ǫp = 6
eV. A spatially-uniform pseudogap is introduced by mod-
ifying the tpd matrix elements to tpxd = tpd + ∆t (i.e.
for the lower vibrational amplitude oxygen) and tpyd =
tpd − ∆t (i.e. for the higher vibrational amplitude oxy-
gen), where ∆t = 0.0375 eV (the argument below only
depends on these being semiquantitatively correct).

The results for the DOS projected into the oxygen 2px

orbitals (lying in x-oriented Cu-O-Cu bonds - see Fig. 3)
and oxygen 2py orbitals are different, as seen in Fig. 4a.
The DOS peak associated with the van Hove singularity
is seen in Fig. 4a to be split, the peak above the Fermi
level being localized only on the lower vibrational ampli-
tude oxygen, and the peak below the Fermi level being lo-
calized only on the higher vibrational amplitude oxygen.
The STM R-map technique7 for detecting the C4 split-
ting experimentally involves the ratio R of the tunneling
current into the empty DOS to the hole current into the
filled DOS. Evidently from Fig. 4, R is predicted to be
large on the low amplitude oxygens and small on the high
amplitude oxygens, in agreement with the observation7,
in which the high amplitude oxygens are associated with
dark streaks in the R-map, while the low amplitude oxy-
gens are associated with bright spots. Note that the C4
splitting is characterized by nanoscale domains7, rather
than being spatially uniform as assumed in the Fig. 4a
calculations.

Appendix G: The FBM Hamiltonian with

Long-Range Interaction in Mean Field

1. The FBM Hamiltonian with Long-Range

Coulomb Interaction

Including the Long-Range Coulomb Interaction
(LRCI) between the charges Q in the antibonding orbital
in (B8) gives the Hamiltonian
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H =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

χ0

2
x2
i+bα/2 +

w

8n

(
x2
i+bα/2

)2
]

+
∑

k,σ

ǫ0knk,σ (G1)

− v√
nns

y∑

i,α=x

x2
i+bα/2Qi+bα/2

+
e2

ǫns

∑

i,j,α,β

Qi+bα/2

∫
d3r

∫
d3r′fα

(
r − ri+bα/2

)
fβ

(
r′−r

j+bβ/2

)

|r− r′| Q
j+bβ/2.

Here fx(r − rbx/2), fy(r − rby/2) are the form factors
(charge probability distribution) of the charges in the x-
and y- antibonding orbitals on a bond from the origin
to x̂, ŷ. fα

(
r − rbα/2

)
can be written in the single band

basis as

fα

(
r − rbα/2

)
=

1

2
(ψ3d(r) − ψ3d(r − rbα))

2
. (G2)

fα (r) is assumed normalized to unity
∫
d3rfα (r) = 1,

as will be the case if the 3d-orbitals on adjacent sites
are orthonormal. ǫ is a background dielectric constant of
order several. A factor of 2 has been incorporated into
the LRCI in order that it be correct for ns = 2.

This can be written more compactly by defining the
LRCI 2 × 2 tensor

Vαβ(ri+bα/2 − r
j+bβ/2) =

2e2

ǫ

∫
d3r

∫
d3r′

fβ

(
r − ri+bα/2

)
fγ

(
r′−r

j+bβ/2

)

|r− r′| , (G3)

H =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

χ0

2
x2
i+bα/2 +

w

8n

(
x2
i+bα/2

)2
]

+
∑

k,σ

ǫ0knk,σ (G4)

− v√
nns

y∑

i,α=x

x2
i+bα/2Qi+bα/2 +

1

2ns

∑

i,j,α,β

Qi+bα/2Vαβ(ri+bα/2 − r
j+bβ/2)Qj+bβ/2.

2. FBM with LRCI Hamiltonian in Mean Field

In this section we employ a mean field formulation
which allows mean field quantities to vary in space, but
does so in a linearized regime where the spatially-varying
quantities are small. Hence the treatment is valid near
the phase boundary where the spatially-varying quanti-
ties become nonzero.

In mean field approximation, the mean field Hamilto-
nian is (to within a constant)

Hmf =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

χi+bα/2

2
x2
i+bα/2

]
(G5)

+
∑

k,σ

ǫ0knk,σ +

y∑

i,α=x

ηi+bα/2Qi+bα/2,

where we defined complete oscillator stiffness χi+bα/2 and

complete bond ”potential” ηi+bα/2 as

χi+bα/2 = χ0 +
w

2n

〈
x2
i+bα/2

〉
− 2v√

nns

〈
Qi+bα/2

〉
, (G6)

ηi+bα/2 =
−v√
nns

〈
x2
i+bα/2

〉
(G7)

+
1

ns

∑

j,β

Vαβ(ri+bα/2 − r
j+bβ/2)

〈
Q

j+bβ/2

〉
.

Here we are exploiting the fact that the Coulomb po-
tential and the (oscillator amplitude)2 interact with the
bond charge Q in the same way.

It is useful to distinguish quantities nonuniform in
space, which will be prefixed with ∆, and spatial averages
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denoted with a bar

Hmf =

y∑

i,α=x

[
1

2m
p2
i+bα/2 +

1

2

(
χ0 + ∆χi+bα/2

)
x2
i+bα/2

]

+
∑

k,σ

ǫknk,σ +

y∑

i,α=x

∆ηi+bα/2Qi+bα/2, χ (G8)

= χ0 +
w

2n
〈x2〉 − 2v√

nns
〈Q〉; (G9)

∆χi+bα/2 =
w

2

〈
∆x2

i+bα/2

〉
− 2v√

nns

〈
∆Qi+bα/2

〉
, (G10)

∆ηi+bα/2 =
−v√
nns

〈
∆x2

i+bα/2

〉
(G11)

+
1

ns

∑

j,β

Vαβ(ri+bα/2 − r
j+bβ/2)

〈
∆Q

j+bβ/2

〉
.

Here ǫk is understood to include the η effects, and elec-
trostatic effects are assumed zero in the uniform system
which is site-neutral.

3. Linearize Vibrator Response

We shall linearize the response
〈
x2
i+bα/2

〉
of the Ein-

stein vibrator on site i+α̂/2 to changes in the vibrator
stiffness χi+bα/2,

〈
∆x2

i+bα/2

〉
=
〈
x2
i+bα/2

〉
− 〈x2〉 (G12)

= −An∆χi+bα/2 (G13)

= −An
(
χi+bα/2 − χ

)
, (G14)

where

A =
~

4m2ω3 g(
~ω

2kT
); (G15)

g(x) = coth (x) +
x

sinh2 (x)
; mω2 = χ. (G16)

So

〈
∆x2

i+bα/2

〉
= −An

(
w

2n

〈
∆x2

i+bα/2

〉
− 2v√

nns

〈
∆Qi+bα/2

〉)
,

(G17)
or

〈
∆x2

i+bα/2

〉
=

2vÃ
√
n√

ns

〈
∆Qi+bα/2

〉
, where (G18)

Ã =
A(

1 +Aw
2

) . (G19)

4. Electronic linear response

The assumption here is that we are near T ∗, hence in
all channels the electronic system can be assumed to have
a linear response

〈
∆Qi+bα/2

〉
= −ns

∑

j,β

Rαβ

i+bα/2−,j−bβ/2
∆η

j+bβ/2 (G20)

= −ns

∑

j,β

Rαβ

i+bα/2−,j−bβ/2


 −v√

nns

〈
∆x2

j+bβ/2

〉
+

1

ns

∑

k,γ

Vβγ(r
j+bβ/2 − rk+bγ/2)

〈
∆Qk+bγ/2

〉

 , (G21)

where R
i+bα/2,j+bβ/2 is a QQ response function. Using

(G18) this can be written in the electronic space

〈
∆Qi+bα/2

〉
− 2K̃

∑

j,β

Rαβ

i+bα/2−,j−bβ/2

〈
∆Q

j+bβ/2

〉

= −
∑

j,β

Rαβ

i+bα/2−,j−bβ/2

×
∑

k,γ

Vβγ(r
j+bβ/2 − rk+bγ/2)

〈
∆Qk+bγ/2

〉
, (G22)

where we have introduced the effective interaction

K̃ = v2Ã = K
Aw

1 + 1
2Aw

; K =
v2

w
. (G23)

The foregoing equation is now a homogeneous linear

equation in the discrete variables
〈
∆Qα

i+bα/2

〉
.

Writing the linear equation (G22) as
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〈
∆Qi+bα/2

〉
= 2K̃

∑

j,β

Rαβ

i+bα/2−,j−bβ/2

〈
∆Q

j+bβ/2

〉
−
∑

j,β

Rαβ

i+bα/2−,j−bβ/2

∑

k,γ

Vβγ(r
j+bβ/2 − rk+bγ/2)

〈
∆Qk+bγ/2

〉
, (G24)

the LHS is the response of the bond charge Q to the 2
terms on the RHS. The first term on the RHS is the
bond-local response of the vibrator to the local bond
charge, which then produces a contribution to the bond
charge elsewhere via the nonlocal electronic response.
The second term on the RHS is the nonlocal effect of the
Coulomb potential produced by remote bond charges, on
the potential in a given bond, which then produces a con-
tribution to the bond charge elsewhere via the nonlocal
electronic response. The response produced by coupling
through the vibrator is attractive (a pairing interaction)
and that via the Coulomb interaction is of course repul-
sive.

5. Response Functions for q = 0

The essence of the long-wavelength behavior of the
RF’s can be obtained by looking at the uniform limit.
Define the sum over space of the α-bond charge

Qα =
1

2

∑

i,σ

(
ni−bα/2,σ + ni+bα/2,σ

)

− 1

2

∑

i,σ

(
c+
i−bα/2,σci+bα/2,σ + c+

i+bα/2,σci−bα/2,σ

)

(G25)

where we refer to bond center as origin of bond. Rewrit-
ing in k-space

Qα =
∑

k,σ

nk,σ−
∑

k,σ

cos (kα)nk,σ =
∑

k,σ

(1 − cos (kα))nk,σ.

(G26)
The expectation value of Qα is

〈Qα〉 =
∑

k,σ

(1 − cos (kα)) 〈nk,σ〉 (G27)

= ns

∑

k

(1 − cos (kα)) f (ǫk − µ) , (G28)

where f is the Fermi function. 〈Qα〉 is positive, as is
correct for the occupation number of the α-oriented bond
antibonding orbital.

To get the RF (G20) we need to differentiate with re-
spect to changing the quantities in H − µN by changing
the coefficients of the two parts of Qβ . The coefficient of
the number operator is −µ. The coefficient of the second
term in (G25) is (−) the hopping integral t, though only

1/2 is changed by Qβ , so

Rαβ = −
∑

k

(1 − cos (kα)) f ′ (ǫk)

×
[
∂ (ǫk − µ)

∂ − µ
− 1

2

∂ (ǫk − µ)

∂tβ

]
(G29)

Rαβ = −
∑

k

(1 − cos (kα)) (1 − cos (kβ)) f ′ (ǫk) . (G30)

Note that at low temperatures f ′ (ǫk) = −δ (ǫk − µ) ,
so that the RF’s are weighted DOS’s at the Fermi level.
The weighting will be dominated by the saddle points at
X= (π, 0) and Y= (0, π). These points contribute, X to
Rxx and Y to Ryy, but neither X or Y contributes to
Rxy or Ryx. The RF is always positive, but because the
off-diagonal terms miss out on the SP contribution, they
are expected to be smaller, hence we write

Rxx = Ryy = R>, (G31)

Rxy = Ryx = R<.

Numerical work suggests that the off-diagonal elements
of R are as much as an order of magnitude lower than
the diagonal terms.

6. Fourier Transform

Spatial FT’s are defined by

f (q) =
∑

i

eiq.rif (ri) ; qα =
2πnα

Nα
(G32)

∑

i

eiq.ri = Nδq,0; N = ΠαNα; (G33)

f (ri) =
1

N

∑

q

e−iq.rif (q) ; (G34)

Applying the FT’s we get a 2 × 2 equation for the FT
of ∆Q:

Qα(q) − 2K̃
∑

β

Rαβ(q)Qβ(q)

= −
∑

β,γ

Rαγ(q)Vγβ(q)Qβ(q), (G35)
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where

Qα(q) =
∑

i

〈
∆Qi+bα/2

〉
eiq.(ri+bα/2), (G36)

Rαβ(q) =
∑

i

Rαβ

i+bα/2−,j−bβ/2
eiq.(ri+bα/2−rj−bβ/2), (G37)

Vαβ(q) =
∑

i

Vαβ(ri+bα/2 − r
j+bβ/2)e

iq.(r
i
+bα/2−rj−bβ/2).

(G38)

Thus the FT Qα(q) is defined to be bond-centered, etc.

7. Simple Limits

a. No LRCI

Suppose that there is no LRCI (as in the FBMII
model), then the equations become

Qx(q) − 2K̃Rxx(q)Qx(q) − 2K̃Rxy(q)Qy(q) = 0
(G39)

Qy(q) + 2K̃Ryy(q)Qy(q) + 2K̃Ryx(q)Qx(q) = 0.
(G40)

Imagine that we are in the q → 0 limit, then approxi-
mately borrowing from q = 0 see (G30)

Rxx(q) ≃ Ryy(q); (G41)

Rxy(q) ≃ Ryx(q), (G42)

so the foregoing equations become

Qx(q) − 2K̃Rxx(q)Qx(q) − 2K̃Rxy(q)Qy(q) = 0
(G43)

Qy(q) − 2K̃Rxx(q)Qy(q) − 2K̃Rxy(q)Qx(q) = 0.
(G44)

These equations support two solutions, a monopole one

Qx = Qy, (G45)

1 − 2K̃ (Rxx(q) +Rxy(q)) = 0, or approximately (G31)
(G46)

1 − 2K̃
(
R> +R<

)
= 0, (G47)

and a quadrupole one

Qx = −Qy, (G48)

1 − 2K̃ (Rxx(q) −Rxy(q)) = 0, or approximately
(G49)

1 − 2K̃
(
R> −R<

)
= 0. (G50)

So in linear approximation there are two instabilities,
the monopolar (G45) and quadrupolar (G48) instabili-
ties. The monopolar instability is the strongest as it de-
pends on the larger RF combination (R> +R<), while

the quadrupolar instability depends on the weaker RF
combination (R> −R<).

This result is in contrast with that in the FBMI, where
the response function combinations are

Rxx ±Rxy = −
∑

k

f ′ (ǫk) cos (kx) (cos (kx) ± cos (ky)) .

(G51)
Because the main weight comes from the SP’s, the re-

sult (G51) is dominated by the Rxx − Rxy combination,
which is positive. Hence in the FBM the quadrupole so-
lution Qx = −Qy (G48) becomes unstable, leading to

C4 symmetry breaking, first as K̃ is increased (the in-
stability in the monopole channel is much weaker in the
FBMI).

The instability in the charge channel is profoundly
modified by the LRCI, hence it seems that the LRCI
needs to be included to make a fully physically correct
extension of the FBM. This is not unexpected as the
new terms in the FBMII Hamiltonian explicitly intro-
duce charge which now must be treated properly. We
shall see below that the explicit introduction of charge
allows the CDW to be fully understood within the full
model FBMIII.

b. No Coupling to Vibrators

Suppose we consider the opposite case K̃ = 0. Now
the equation is

Qα(q) = −
∑

β,γ

Rαγ(q)Vγβ(q)Qβ(q). (G52)

Also suppose that the bond charges can be treated as
highly localized, when approximately

Vγβ(q) ≃ 8πe2

ǫvcq2
, (G53)

where vc is the unit cell volume. Then defining a bond-
average Q

Q(q) = (Qx(q) +Qy(q)) /2, (G54)

Q(q) = −
∑

α,γ

Rαγ(q)
8πe2

ǫvcq2
Q(q), or

1 +
8πe2

ǫvcq2

∑

α,β

Rαβ(q) = 0. (G55)

The latter equation can be simplified by taking the q = 0
limit of the RF, giving

1 +
16πe2

ǫvcq2
(
R> +R<

)
= 0, (G56)

which defines the growing/decaying FT wavevector

q = ±i
√

16πe2

ǫvc
(R> +R<). (G57)
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c. Approximate Discussion of General Case for q → 0

We can write the generalized equations

Qx(q) − (2K̃Rxx(q) − Πxx(q))Qx(q)

− (2K̃Rxy(q) − Πxy(q))Qy(q) = 0 (G58)

Qy(q) − (2K̃Ryy(q) − Πyy(q))Qy(q)

− (2K̃Ryx(q) − Πyx(q))Qx(q) = 0, (G59)

where

Παβ(q) =
∑

γ

Rαγ(q)Vγβ(q). (G60)

If we continue to assume that q → 0, and for simplicity
assume that the bond charges can be considered strongly
localized on the q−1 scale (a poor approximation in the 1-
band model, since the quadrupolar charge distribution is
on precisely the same scale as that of the bond charges),
so that the suffixes on Vγβ(q) can be neglected

Vγβ(q) ≃ V (q), (G61)

Παβ(q) = V (q)
∑

γ

Rαγ(q), (G62)

then the equations become (dropping the wavevector ar-
gument for clarity)

Qx − (2K̃Rxx − V Rxx − V Rxy)Qx

− (2K̃Rxy − V Rxy − V Rxx)Qy = 0 (G63)

Qy − (2K̃Ryy − V Ryy − V Ryx)Qy

− (2K̃Ryx − V Ryx − V Ryy)Qx = 0. (G64)

If we make the same q → 0 approximation as before

Rxx(q) ≃ Ryy(q); (G65)

Rxy(q) ≃ Ryx(q), (G66)

then the foregoing equations become

Qx − (2K̃Rxx − V Rxx − V Rxy)Qx

− (2K̃Rxy − V Rxy − V Rxx)Qy = 0 (G67)

Qy − (2K̃Rxx − V Rxx − V Rxy)Qy

− (2K̃Rxy − V Rxy − V Rxx)Qx = 0. (G68)

then again the monopolar solution

Qx = Qy, (G69)

1 −
(
Rxx(q) +Rxy(q))(2K̃ − 2V (q)

)
= 0, (G70)

1 −
(
R> +R<)(2K̃ − 2V (q)

)
= 0 (G71)

and quadrupolar solution

Qx = −Qy, (G72)

1 − 2K̃
(
R> −R<

)
= 0. (G73)

are supported.

The quadrupolar solution (G72) is the same as the so-
lution without Coulomb interaction, which cancels out,
it should lead to the condition for T ∗, at least in the
long-wavelength limit.

The monopolar solution can be written using the q → 0
limit of the RF’s (again putting V (q) = 8πe2/ǫvcq

2)

1 − K̃
∑

α,β

Rαβ(q) +
8πe2

ǫvcq2

∑

α,β

Rαβ(q) = 0, or

(G74)

1 − 2K̃
(
R> +R<

)
+

16πe2

ǫvcq2
(
R> +R<

)
= 0. (G75)

In this equation if

2K̃
(
R> +R<

)
> 1, (G76)

we indeed obtain the anomalous FT where the wavevec-
tor q is real, i.e. a CDW exists which does not depend

on nesting:

q =

√√√√ 16πe2 (R> +R<)

ǫvc

(
2K̃ (R> +R<) − 1

) , (G77)

which has a large K̃ limit

q =

√
8πe2

ǫvcK̃
. (G78)

8. Summary

In the FBMI, which is missing the charge term in
Q, having only the X term, there is a q = 0 insta-
bility in the quadrupole, or d-symmetry, channel. In
the FBMII, which includes the charge term in Q, there
is a q = 0 instability in both the quadrupole and the
monopole channels. In the FBMIII, which includes also
the LRCI, there is a q = 0 instability in the quadrupole
channel. In the monopole channel there is an anoma-
lous Fermi-Thomas equation for the charge density or
potential which describes an oscillatory, or CDW, re-
sponse instead of the conventional exponentially screened
response. The monopolar solution has the wavevector
(G77).

There are two transition temperatures, the higher,
T ∗

0 , given by the equality in (G76), defines the onset of
the anomalous FT CDW-like solution. The lower tem-
perature, T ∗

2 , defines the onset of the quadrupolar, C4
symmetry-breaking instability seen at low temperatures.
This weakly wavelength-dependent instability may lock
to the CDW wavelength.
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