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We propose and analyze a simple model for the calculation of the power P ∗ necessary to depin an
essentially rigid cluster or nanoparticle on a surface with a scanning force microscope tip in tapping
mode. The model contains the coupling between the particle’s lateral and normal motion. We show
that there are two important limiting regimes: (i) If momentum transfer occurs gradually between
tip and particle, P ∗ depends mainly on the viscous-type drag between particle and surface. (ii) If
momentum transfer occurs instantaneously once per oscillation, P ∗ is dominated by the minimum
energy barrier necessary to move the cluster by one lattice constant. In the quasi-static driving
mode (i), a critical impact angle α∗t is identified below which depinning cannot be achieved due to
lateral-normal coupling.

I. INTRODUCTION

In recent experiments, a scanning force microscope
(SFM) tip is used to probe various islands or clusters
(“nanoparticles”) of antimony atoms adsorbed on either
graphite or on MoS2 substrates.1 These islands or parti-
cles with a linear dimension in the order of 100 to 300 nm
self organized after thermal evaporation of solid anti-
mony. The SFM tip impacts such self-organized nanopar-
ticles in tapping mode while the power loss P of the SFM
tip is recorded for each individual cluster.1 The experi-
ments show that an island becomes mobile only when P
exceeds a threshold value P ∗; for P < P ∗, the nanopar-
ticle remains pinned at their initial positions. Analysis
indicates that the antimony clusters appear generally un-
damaged during the experiments. The full interpretation
of these experiments remains an open question; specifi-
cally, it is not known whether or not P ∗ can be related
to the static friction force Fs, some kind of activation
energy ∆E or to phononic-type damping. In general, it
would be desirable to understand what energy is required
to translate adsorbed particles on surfaces, as there is an
increasing experimental body of work that is concerned
with the mechanical manipulation of adsorbed nanopar-
ticles (see, e.g., Refs. 2–7).

Large-scale computer simulations are certainly helpful
to more fully address the detailed atomistic dynamics of
the experiments sketched above. In particular, a simula-
tion can include many important aspects (such as long-
range elastic deformations of the SFM tip and the sam-
ple) more readily than a primarily analytical approach
can. However, as a first step, we attempt to discover
the relation between P ∗ and various parameters (Fs,
phononic drag, tip frequency, etc.) by studying a highly

idealized model that includes some of the experiments’
key features. The main approximation in our treatment
is that the cluster is treated as a rigid body, i.e., we
assume that elastic deformation occurs instantaneously
and that its effects can be ‘absorbed’ into effective inter-
actions. However, we specifically want to account for the
coupling between lateral and normal motion of the rigid
body as it moves on the substrate, i.e., the harder the
island is pressed by the tip into the substrate the higher
the expected lateral force between island and substrate.
Although we would prefer a generic case study, our model
requires certain ad hoc assumptions about the pair-wise
interactions between the bodies involved: the antimony
cluster, the graphite substrate, and the SFM tip in tap-
ping mode. However, once the model is defined, it is
possible to investigate how the adsorbed islands moves
under the influence of a periodically oscillating SFM tip
and which parameters affect the motion and hence energy
dissipated in the experiment.

Several theoretical arguments and computer simula-
tions suggest that each atom in a dry contact of two
chemically passivated solids has only one mechanical sta-
ble position once the contacting solids’ relative center of
mass and orientation is known.8 Thus, we will assume
that no bond breaking occurs during the experiments
and that the two solids can be treated as effectively rigid
objects. Under these circumstances, coupling to inter-
nal lattice vibrations (or to other dynamical modes that
quickly find local thermal equilibrium) primarily leads to
a drag force linear in the instantaneous, relative sliding
velocity. With these assumptions in mind as well as the
substrate’s periodicity, it is possible to define a rather
generic model for the interaction between nanoparticle
and substrate. Modeling the force between an SFM tip
in tapping mode and the adsorbed island unfortunately
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leaves us with many possibilities. For instance, it is
not obvious whether momentum is transferred gradually
or abruptly from the tip to the sample. Therefore, we
will consider two limiting cases; one in which momentum
transfer occurs instantaneously once per tip oscillation,
and one in which the momentum is transfered gradually
with the frequency of the tip.

In the next section, we will introduce our model in de-
tail. In Sect. III, we will discuss analytically available
solutions for the dynamics, in particular the quasi-static
motion of the cluster and a quasi-harmonic approxima-
tion to the problem. Sect. IV contains a comparison
between numerical solutions of the equations of motion
and the various analytical solutions. We will conclude in
Sect. V.

II. MODEL

We first consider a straightforward model for the con-
servative and the non-conservative forces between the is-
land and the substrate. The free model parameters are
not yet specified. However, they will be related to ex-
perimentally available data such as static friction force
Fs and interfacial stiffness in Section III. We will also
discuss the coupling between tip and substrate.

A. Particle-substrate interaction: Cobblestone

model

The cobblestone model in its original form considers
the interaction between two essentially non-deformable
but rough surfaces.9 The model therefore implies the ar-
gument going back to Euler that one solid body has to
climb up an effective slope in the initial sliding process.
This in turn implies proportionality of lateral and nor-
mal force given a relative lateral position of the two solid
bodies in contact. Here, we intend to discuss an interac-
tion potential amenable to simple analytical calculation
that has the cobblestone property.

For simplicity, we consider a two-dimensional model
that includes coupling between lateral and normal mo-
tion. Let x and z denote the horizontal and vertical
coordinates respectively; then z is the normal distance
between the adsorbed particle and the substrate. Follow-
ing Steele’s construction of atomic substrate potentials,10

at a fixed height z, the interaction potential Vsub(x, z)
between an essentially rigid nanoparticle and a periodic
substrate is periodic in the lateral direction x with period
2πa (also called the lattice constant of the substrate).
Thus, as a first approximation,

Vsub(x, z) =

Ṽ0(z) + Ṽ1(z) cos(x/a) + Ṽ2(z) cos(2x/a) + · · · ,(1)

where the expansion coefficients Ṽn(z) depend on z alone.
If r is the distance between two atoms, the repulsive

portion of inter-atomic potentials is often of the form
exp(−r/σ) for some suitable length constant σ thus, we
assume a similar behavior in the lateral dependence of
the coefficients in Eq. (1), namely

Ṽn(z) = Vne
−z/σn , (2)

for some coefficients Vn and σn. We assume further that
the coefficients σn depend weakly on n, i.e., σn = σ =
constant for all n. (Varying σn violates the linear lat-
eral force versus normal-load relationship, which can be
seen by taking the first partial derivative of V (x, z) with
respect to x and with respect z.)

Since our arguments extend to three dimensions, we
use A to refer to the measure or generalized area of the
region of contact. In our two-dimensional model, A is
actually the length of a one-dimensional line of contact
measured in units of σ. Consider the dependence of the
coefficients Vn in Eq. (2) on A. Now, since Ṽ0(z) in
Eq. (1) is independent of the corrugation of the surface,
the coefficient V0 must be linear in A irrespective of the
surface’s periodic symmetry. Hence, for some constant
of proportionality v0, V0 = Av0(z). Higher-order terms
Vn in the substrate potential are linear in A only if the
two surfaces manage to lock together perfectly, i.e., only
if they are commensurate. In general, V1 is expected to
show non-trivial dependence on A, e.g., 〈|V1|2〉 ∝ A if
one of the two surfaces is disordered.11 In the following
calculations, we will assume fixed values for A, V0, and
V1. However, for the purpose of a general discussion,
we have included which scaling of V0 and V1 with A one
might expect.

Neglecting terms above n = 1 in Eq. (1), the substrate
potential Vsub is given by

Vsub(x, z) = e−z/σ (V0 + V1 cos(x/a)) . (3)

From the argument in the preceding paragraph, V0 =
v0A, so we can write

Vsub(x, z) = v0Ae−z/σ
(

1− µa

σ
cos(x/a)

)

, (4)

where µ := −(σV1)/(aV0) is a coefficient that depends on
A in principle. To make Eq. (4) nondimensional, choose
σ as the unit of length and v0 as the unit of surface
energy per unit of length or area. Thus, when we add a
load Fl (either externally imposed or adhesive), the total
dimensionless potential of the adsorbed particle is

V (x, z) = Flz +Ae−z (1− µa cos(x/a)) . (5)

The inclusion of a constant (adhesive) load Fl in the po-
tential V is simplistic but using a more realistic load
leaves the main conclusions unaltered. Similar poten-
tials have been used to model tribological systems,12 in
particular to study the coupling of normal and lateral
motion. We show below that the present choice of V
reproduces the linear relationship between friction force
and external load (as manifested in Amontons’s law8).
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Furthermore, this potential implies that the interfacial
stiffness varies linearly with Fl (which has indeed been
observed experimentally13).

When the island moves at finite velocities, it is subject
to normal and corrugation forces and its motion couples
to lattice vibrations within the substrate or other quickly
equilibrating internal degrees of freedom. This coupling
is typically described by a simple Stokes damping mech-
anism plus thermal fluctuations.8 Disregarding thermal
fluctuations, whose effects can be mimicked by stochastic
random forces, the equation of motion is

Aρh

(

ẍ
z̈

)

+A

(

γx 0
0 γz

)(

ẋ
ż

)

+

(

∂V/∂x
∂V/∂z

)

=

(

Fx(t)
Fz(t)

)

,

(6)
where γx and γz respectively denote the lateral and nor-
mal damping coefficients per unit area per unit velocity,
h denotes the average height of the island, and ρ de-
notes the nanoparticle’s mass density. Although the co-
efficients γx and γz almost certainly depend on the ver-
tical distance between the island and the substrate, we
disregard this dependence in our analytical calculations.
While it is not too difficult to account for such effects in
practical numerical calculations, we intend to keep the
number of ad hoc parameters as small as possible. More-
over, it is conceivable that the external normal force is
small compared to the adhesive load and that the varia-
tions of the damping coefficients during the experiment
are negligibly small.

We choose ρh to be the unit of mass per unit area.
Thus, ρhσ2 corresponds to the unit of mass and rewriting
in terms of dimensionless units, Eq. (6) becomes
(

ẍ
z̈

)

+

(

γx 0
0 γz

)(

ẋ
ż

)

+
1

A

(

∂V/∂x
∂V/∂z

)

=
1

A

(

Fx
Fz

)

. (7)

The external force F = (Fx, Fz)
T in Eq. (7) represents

the interaction between tip and island and is described
below.

All our results will be free of units, because the three
mechanical units have been defined through σ, v0, and
ρh. Without loss of generality, we assume the island’s
area of contact to be equal to unity as well.

B. Tip-particle coupling

Consider the system’s geometry as shown in Fig. 1. To
model the contact mechanism between the nanoparticle
and the SFM tip, our main assumption is that the contact
region is sufficiently small that the local geometry of the
SFM tip is that of a flat wedge inclined at an angle αt

from the horizontal. Thus, it is possible to treat the tip-
particle interaction as a wedge-particle interaction, i.e.,

F =

(

Fx
Fz

)

:= F (t)

(

sinαt

− cosαt

)

(8)

where F (t) is the time-dependent amplitude of the ex-
ternal force applied. Using Eq. (8), we implicitly assume

FIG. 1: Schematic of SFM tip-particle coupling. The SFM
tip is locally approximated by a flat wedge. The angle of incli-
nation αt decomposes the force F into normal and transversal
components.

that the SFM tip in tapping mode moves mostly in the
vertical direction and that small fluctuations of the is-
land’s position has little influence on the impact angle
αt. Furthermore, we assume that the area of contact on
the island can also be approximated by a wedge near the
point of impact and that its local slope is the same as
that of the tip. Knowing the relationship Eq. (8) be-
tween the normal and lateral external force components
greatly simplifies all following calculations.

It is not generally possible to specify the external driv-
ing force F that the tip exerts on the sample (e.g., there
may be a feedback mechanism between the sample’s mo-
tion to the tip’s motion). However, once the system
reaches its steady state under oscillatory driving, F (t)
must have the same time period as the SFM tip’s verti-
cal motion while the nanoparticle remains pinned. Thus,
as long as the island remains stable, F (t) can be written
as a Fourier sum

F (t) =
∑

n

Fne
inωtt, (9)

where ωt is the tip’s tapping frequency and Fn are Fourier
coefficients.

In our treatments that follow, two limits are analyzed
regardless of whether they use a the full island-substrate
potential or small-amplitude approximation. In the first
limit, only small frequencies nωt are considered relevant,
i.e. F0 and F1 dominate the time-dependent contribution
in Eq. (9). For the second limit, we assume the momen-
tum transfer occurs in time with the SFM tip’s period,
in which case Fn does not depend on the Fourier index
n. The actual behavior in experiments lies somewhere
between these two extremes.
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III. THEORY

A. Equilibrium Analysis

Consider the system described by Eq. (7) under adia-
batic or quasi-static driving. It is in an equilibrium state
(xeq, zeq) when the gradient of the potential V in Eq. (5)
exactly balances the external driving force F in Eq. (8),
i.e.,

∂V

∂x

∣

∣

∣

(xeq,zeq)
= Fx, (10a)

∂V

∂z

∣

∣

∣

(xeq,zeq)
= Fz. (10b)

Before deriving the general solution of the system
Eq. (10), it is instructive to consider a specialized sys-
tem to gain insight into the interpretations of the model’s
parameters.

1. Equilibrium analysis of system under lateral force

In many cases, friction forces are measured under
a constant normal load rather than under a time-
dependent load, which we effectively obtain if αt 6= π/2 in
Eq. (8). We will therefore discuss time-dependent lateral
driving first by examining the mechanically stable posi-
tion as a function of external lateral force at constant
(adhesive) load Fl. For this special case and provided µa
is sufficiently small, we will show that the maximum lat-
eral force Fs that the substrate can exert on the cluster
satisfies Fs = µFl, so that we may interpret µ as a fric-
tion coefficient. Moreover, the energy difference between
the point of smallest and largest potential energy can be
approximated by ∆Emin ≈ 2aFs for small values of µa.
The remainder of this section will be concerned with the
calculations leading to these results.

Assume for the moment that the applied force is
strictly lateral, i.e., that αt = π/2 in Eq. (8). As a result,
the normal equilibrium coordinate zeq is determined by
requiring ∂V (xeq, zeq)/∂z = 0 in Eq. (10b). Under this
assumption, zeq is a unique function of xeq, namely

zeq(xeq) = − ln

(

Fl/A

1− µa cos(xeq/a)

)

(11a)

≈ − ln(Fl/A)− µa cos(xeq/a), (11b)

where the approximation Eq. (11b) is valid when µa is
sufficiently small. From Eq. (11a), the maximal gradient

of zeq with respect to xeq is µ/
√

1− µ2a2. Thus, Eq. (11)
shows that µ is the steepest gradient up which the island
climbs while moving on the substrate under lateral quasi-
static driving in the limit as µa→ 0.

To maintain quasi-static driving, the lateral compo-
nent of the external force must balance the force in-
duced by the substrate potential. This condition implies

Fx = ∂V (xeq, zeq(xeq))/∂x, so

Fx = Aµe−zeq(xeq) sin(xeq/a). (12)

The magnitude of Fx in Eq. (12) is extremal when

tan(xeq/2a) =
√

(1 + µa)/(1− µa). This equality has
two consequences: (i) The x position where Fx is maxi-
mal is (slightly) shifted with respect to the value aπ/2,
which one would expect from a simple sinusoidal tip-
substrate potential −V cos(x/a) reflecting lateral-normal
coupling only to lowest order. (ii) The maximum lateral
or static friction force is

Fs := maximum lateral or static friction force

=
µFl

√

1− µ2a2
(13a)

≈ µFl (13b)

in the limit as µa → 0. Notice that even when using a
more realistic adhesive term in the potential V in Eq. (5)
(e.g., a Morse potential), the interpretation of µ as a max-
imum slope of the island’s spatial trajectory remains true
even though a different maximum static friction force Fs

results in Eq. (13).
Having derived zeq(xeq), the energy at the top of the

barrier Emax = V (πa, zeq(πa)) at fixed load Fl is Emax =
Fl [1 + ln {A(1 + µa)/Fl}]. Since the ground state energy
Emin is Emin = V (0, zeq(0)) = Fl [1 + ln {A(1− µa)/Fl}],
we compute the optimum energy barrier ∆Emin as

∆Emin := Emax − Emin

= Fl ln

(

1 + µa

1− µa

)

(14a)

≈ 2aFs (14b)

in the limit as µa → 0. The energy barrier ∆Emin is a
lower bound on the amount of energy needed to displace
an adsorbed nanoparticle at rest from one minimum to
the next laterally adjacent minimum (starting from rest
and under a constant normal load).

We wish to conclude this section with a discussion on
the position x∗eq where the particle would become un-
stable if the lateral external force was ramped up very
slowly with time. The condition for this to happen is
mentioned in the text following Eq. 12, i.e., for small
lateral-normal coupling (µ is close to zero), it would oc-
cur at x∗eq ≈ aπ/2. This corresponds to a result found

by Gnecco et al.14, who studied the friction between an
atomic force microscope tip and a substrate within the
Tomlinson model, which does not include lateral normal
coupling explicitly. They found the same depinning po-
sition in the limiting case where the driving spring is ex-
tremely compliant and moved very slowly. In this limit
one can show that the (external) force from the spring on
the particle is essentially constant in time8, which corre-
sponds to the situation discussed in our stability analysis.
We may add that when moving quasi-statically, our ob-
ject can be interpreted to be part of the tip. Conversely,
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it is often believed that atomic force microscope tips are
contaminated with material from the substrate which is
slid against genuine substrate. This justifies the compar-
ison between Gnecco et al.’s14 and our study.

2. General equilibrium analysis

We will now be concerned with the analysis of the
quasi-static dynamics of the cluster when it is driven by
an oscillatory force with slowly-varying amplitude F un-
der an arbitrary impact angle αt. It will be shown that
there is a critical value α∗

t for the impact angle below
which the cluster will remain pinned in the model, no
matter how large F . For α > α∗

t , there is a critical
threshold F ∗ for the force amplitude above which the
particle cannot remain pinned.

Including the effect of arbitrary impact angle, one
would has to replace the load Fl in Eq. (11a) with Fl−Fz,
where Fz = −F0 cosαt represents the z-component of the
force that the tip exerts on the island, thus,

zeq = − ln

(

(Fl − Fz)/A

1− µa cos(x/a)

)

. (15)

Consequently, the lateral equilibrium position for a given
external force must satisfy:

(Fl − Fz)
µ sin(xeq/a)

1− µa cos(xeq/a)
= Fx, (16)

where Fx = F0 sinαt is the x component of the tip force.
(This equation follows from adding a potential energy
term −(Fxx+ Fzz) to the potential energy of the island
and requiring that the derivative of the total potential
with respect to x must be zero.) This equation can be
solved for (positive) cos(xeq/a), resulting in

cos(xeq/a) =
f̃2 +

√

µ̃2(1 + f̃2)− f̃2

µ̃(1 + f̃2)
, (17)

where we have introduced the reduced lateral force f̃ =
Fx/{a(Fl − Fz)} and the reduced atomic friction coeffi-
cient µ̃ = µa. Substituting Eq. (17) into Eq. (15) then
yields the rigid body’s mechanically stable z position as
a function of load Fl and force amplitude F0.

If the external force is varied very slowly so that the tip
is always at its mechanical equilibrium position at every
instance of time, one can calculate the tips trajectory as
a function of time and the threshold force F0, at which
the island is starting to become unstable. The instability
occurs when Eq. (17) has no more (stable) solution upon
increasing F0, for instance, when the argument of the
square root on the right-hand side of Eq. (17) becomes
negative. Thus, we obtain the following threshold value

f̃∗ for the reduced lateral force f̃∗ = µ̃/
√

1− µ̃2.
It is important to note that this threshold is different

from the one that we obtained earlier by arguing that the

tip becomes unstable at x = πa/2. Using the original
quantities, the new threshold force reads

F ∗
x =

µa
√

1− µ2a2
(Fl − F ∗

z ). (18)

Moreover, it is interesting to note that due to lateral-
normal coupling, the instability does not occur at a
quarter of a lattice constant (which is 2πa), but before,
namely at

cos(x∗/a) = aµ, (19)

which is obtained by substituting f̃∗ = µ̃/
√

1− µ̃2 into
Eq. (17). It is therefore not possible to displace a parti-
cle laterally into another minimum without hysteresis ef-
fects. Subsequently, instability-induced energy loss can-
not be avoided by applying a time-dependent lateral force
without varying the normal load at the same time.

In Fig. 2, we show the dynamics of the island’s center-
of-mass for our default system (as defined by the values
for the model’s parameters that appear in the figure cap-
tion). Force amplitudes just below and just above the
analytically calculated value for F ∗ are investigated. If
F is just below F ∗, the trajectory appears smooth in the
analytical solution, despite the apparent cusp in xeq(t).
The numerical solution of the equations of motion is not
included in the figure, as it would be right on top of
the analytical solution. Once F exceeds F ∗, there are
moments in time where no analytical solution exists for
quasi-static dynamics and we investigate the motion of
the particle by solving the equations of motion numeri-
cally. One can see that the particle suddenly picks up mo-
mentum in x direction as it reaches the depinning point.
Due to the normal lateral coupling, the island performs
strong oscillations in its z coordinate. Note that the two
trajectories resemble each other very closely as long as
the particle driven with F > F ∗ has not yet depinned.

It is also important to note that depinning may not be
possible if the contact angle αt is too small, for instance
when tanαt exceeds the maximum slope that the island
has to climb up the substrate’s corrugation, see Fig. 1,
In that case, the magnitude of the lateral force exerted
by the substrate on the island grows more quickly with
increasing F than the lateral component of the tip force.
A phenomenon related to this argument may explain why
it was not possible in the study reported in Ref. 1 to
simply drag the islands in regular contact mode. This
suggests that there is a critical angle α∗

t , below which
depinning becomes impossible.

As one approaches α∗
t from above by decreasing αt, the

critical force F ∗ will of course increase. Once αt becomes
too small, the island cannot be pushed out of its original
valley, which is a consequence of the cobblestone property
of the model combined with the constant wedge-angle
assumption. Criticality with respect to the impact angle
αt is reached when F ∗ tends to infinity. At this point,
we can neglect the load Fl as compared to F ∗

z in Eq. (18)
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FIG. 2: Trajectory under a force F = F0(1 −

cos(ωt)t)/2 (sinαt,− cosαt) with ωt = 2π/2000 and αt =
30◦. (Note that the maximum amplitude of the force is F0

and not F0/2.) Two cases are considered, namely just be-
low (dashed line from quasi-static solution) and above (solid
line from simulation) threshold F ∗

0 = 0.21694 for a system
with a = 1, kxx = 0.1kzz. (a) shows the trajectory in lateral
and (b) shows the trajectory in normal direction. (The ‘stiff-
nesses’ kxx and kzz are introduced in Sec. III B and reflect a
system described by µ = 0.0909...). Damping is chosen to be
γx = γz = 0.04. The dashed lines correspond to the analytic
solution in Eq. (17), while the solid line (left) and the dots
(right) represent respectively the x and the z coordinate of a
particle as described in the simulation further below.

so that we obtain

α∗
t = atan

µ
√

1− µ2a2
. (20)

This result will be confirmed in the result section along
with an analysis what ratio of the energy will be dissi-
pated due to normal motion.

B. Harmonic Approximation

With the full nonlinear potential V in Eq. (5), the full
analytical solution of Eq. (7) is not attainable in closed
form. However, sometimes, we are only interested in the

oscillatory motion of the cluster around its equilibrium
state or in the response of the system to a very small
external force induced by the SFM tip. For such cases,
we make a harmonic approximation. That is, we linearize
the force induced by the full nonlinear potential in Eq. (5)
around some equilibrium position (xeq, zeq) (which corre-
sponds to using terms up to quadratic order in the Taylor
expansion of the potential).

The general form of the equation of motion using this
approximation reduces to one of a simple damped har-
monic oscillator in two dimensions, namely
(

ẍ
z̈

)

+

(

γx 0
0 γz

)(

ẋ
ż

)

+
1

A

(

kxx kxz
kzx kzz

)(

x− xeq

z − zeq

)

=

1

A

(

Fx
Fz

)

. (21)

The coefficients kxx, kxz, kzx, and kzz of the quadratic
terms in the harmonic potential are interfacial stiffness
coefficients defined by

kxx :=
∂2V

∂x2

∣

∣

∣

(xeq,zeq)
, kxz :=

∂2V

∂z∂x

∣

∣

∣

(xeq,zeq)
, (22)

kzx :=
∂2V

∂x∂z

∣

∣

∣

(xeq,zeq)
, kzz :=

∂2V

∂z2

∣

∣

∣

(xeq,zeq)
.

Assuming the lateral equilibrium coordinate xeq has in-
version symmetry (e.g., at xeq = 0), the mixed terms
kxz and kzx of the stiffness matrix vanish in Eq. (21).
Thus, in this section, we assume xeq = 0 and hence
kxz = kzx = 0. We provide in Section IIIA an equi-
librium analysis to derive expressions for the equilibrium
coordinates (xeq, zeq) of the island; combined with the
definitions in Eq. (22), that analysis explicitly gives the
interfacial stiffness parameters in terms of the physical
parameters in V and F .

Our primary motivation for studying the approximate
model Eq. (21) is to derive estimates of the power loss
P due to damping for a given applied force F in Eq. (8).
Depending on the choice of F in Eq. (8), it is possible to
find the analytic solution x(t) for the equation of motion,
Eq. (21), in closed form. Thus, it is possible to compute
the maximum lateral deflection xmax for a given ampli-
tude F0 of the applied force. If F0 is sufficiently large that
xmax > πa, the island has moved across a lateral peak in
V , the full nonlinear potential in Eq. (5). In that case,
the harmonic approximation does not really apply since
the applied force would have pushed the island toward
the next laterally adjacent minimum of V . Since the ac-
tual restoring force ∂V/∂x is maximized when x = πa/2
in Eq. (7), we shall look instead for a critical force am-
plitude F ∗ in Eq. (8) such that

x∗max =
πa

2
= one quarter of a lattice constant. (23)

The critical force amplitude F ∗ at which Eq. (23) is sat-
isfied in the harmonic approximation can be used to give
an estimate on the threshold power P ∗ to displace the
island from its stable position as mentioned in Section I.
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Within standard linear-response theory, one can calcu-
late the average power 〈P 〉 dissipated into the damping
terms

〈P 〉 = A(γx〈ẋ2〉+ γz〈ż2〉), (24)

i.e., the contribution to 〈P 〉 due to the motion parallel to
x is given by

〈Px〉 = γxA
∑

n

n2ω2
t | F̃x,n/A |2

(kxx/A− hnωt)2 + γ2
xn

2ω2
t

. (25)

Here we have used the relation between the Fourier coef-
ficients x̃n and F̃x,n, which follows from the first line in
Eq. (21) and is given by

(

−hn2ω2
t + iγxnωt + kxx/A

)

x̃n =
1

A
F̃x,n (26)

A similar derivation applies for the contribution Pz(t)
related to the motion normal to the interface.

IV. RESULTS FOR THE THRESHOLD POWER

A. Low-frequency limit

In this section, we will consider driving under small fre-
quencies, similar to the way in which the island is driven
in Fig. 2. Indeed, the parameters listed in the caption of
that figure are the default parameters used here.

It is easiest to discuss the motion at small values of
the maximum driving force F0, since then the harmonic
approximation is valid. In that case, the island is well
in the pinned regime. As ωt is small compared to all
other frequencies in the system, we may approximate the
(average) dissipated power given in Eq. (25) with

Px ≈
γxA

2
ω2

t A2
x, (27)

where Ax = F0,x/kxx is the lateral amplitude of the oscil-
lation. If one assumes that the harmonic approximation
provides good estimates for the dissipated power even
close to depinning, then one may estimate the dissipated
threshold power (only the contribution that goes into the
lateral damping) with

P ∗
x ≈

γxA

2
ω2

t A∗
x
2, (28)

where A∗
x is the lateral amplitude at which the island

depins, i.e., at A∗
x ≈ 1.5 in Fig. 2. Note that this value

of A∗
x is close to a quarter of a lattice constant, which is

where a ‘naive’ treatment would have expected depinning
to occur.

A similar relation for the threshold power can be de-
rived for the threshold power P ∗

z due to the damping
associated with the normal motion. However that ap-
proximation is less satisfying due to the non-monotonic
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(Ω
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t/Ω

)2 quasi−static solution
harmonic approximation
default
γ = 2γdefault

Ω = 2Ωdefault

branch due to inertial
mini−instabilities

physically meaningful
depinning threshold

FIG. 3: Scaled dissipated power for different driving ampli-
tudes in the low-frequency regime. Symbols are from simula-
tions, while lines correspond to analytical theories according
to Eq. (29), which contains the maximum force F0 implicitly,
see also Fig. 2. The end-point of the quasi-static solution is
marked by an arrow. Due to inertial effects, the particle can
be pushed with forces slightly above the analytical end-point
force and nevertheless remain pinned. In that case, however,
the particle departs from the quasi-static solution leading to
increased dissipation. This branch is unstable against small
fluctuations and therefore the end point of the analytical solu-
tion provides the physically relevant force and power thresh-
old.

behavior in the z component between the initial position
and the depinning position. The non-monotonic form or
the little peak in the z component, which can be seen
on the right-hand side of Fig. 2 before depinning, reflects
some ‘extra motion’. This results in extra energy dissi-
pation as compared to a case where the peak was not
present.

A rather reasonable approximation can be obtained by
considering the quasi-static solution stated implicitly in
Eq. (17). At every instance of time, we may approxi-
mate the velocity of the island by the vector (ẋeq, żeq).
The power dissipated into the ‘lateral’ thermostat is then
given by

Px = γxA
〈

ẋ2
eq

〉

, (29)

where 〈•〉 denotes the average over one oscillation. In
fact, if the time-scale separation is obeyed as well as for
our default system, Eq. (29) is essentially exact. This
is demonstrated in Fig. 3, where a full simulation (nu-
merical integration of the ‘true’ equations of motion) is
compared to the power obtained from Eq. (29). The sim-
ple harmonic approximation turns out surprisingly close
to the exact solution. P ∗

x is off by a factor of two close
to depinning. This factor is not universal, but it depends
on the impact angle αt and the coefficient aµ.

In Fig. 3 we also included data, in which the driving



8

frequency ωt and the phononic damping γx was changed
by a factor of two. It can be seen that all curves super-
impose rather nicely, if the dissipated power is rescaled
to P/γω2

t , see Eq. (27). A feature that cannot be incor-
porated into the quasi-static solution is the occurrence
of a new branch at an external driving force just a little
above the theoretically predicted depinning force. The
dissipated power seems to have an almost infinite slope
with respect to F0 near the predicted critical value F ∗

0 .
The reason for this additional branch can be understood
as follows: If F exceeds F ∗

0 just by a tiny amount, the
system should become unstable. However, the time dur-
ing which the depinning condition is satisfied is too short
for the particle to react and the island moves only a very
small distance into the ‘depinned’ area. In the mean-
time, the external lateral force has been reduced and the
depinning condition is no longer satisfied. The particle
then quickly moves back towards the proper xeq, similar
to what was called a second-order instability in Ref. 15.
It is obvious that an almost arbitrarily small thermal
fluctuation would help an island to depin once it entered
the depinned area. Therefore, this additional branch will
be suppressed and the physically meaningful depinning
occurs near the end point of the quasi-static solution.

In the low-frequency limit, the energy loss is obviously
related to the phononic damping rather than to the static
friction force or intrinsic energy barriers. It may never-
theless be difficult to exploit the equations derived in
this section to determine a meaningful ‘intrinsic’ damp-
ing coefficient from measuring the power loss. One of the
reasons is that we treated the damping coefficient as con-
stant, which is certainly not true if the normal load fluc-
tuates significantly during one oscillation. The harder we
press the island into the substrate, the larger the viscous
damping between the phonon baths16. This can be ra-
tionalized as follows: When the (surface) atoms fluctuate
around their current equilibrium positions, the momen-
tum transfer between two atoms from opposing surfaces
will increase when they are more strongly pressed against
each other. This will result in higher damping and does
not require instabilities. The load-induced increase in
damping may turn out small if the additional external
normal force is small as compared to the adhesive load.

The other possible difficulty in relating measured pow-
ers to the damping coefficient is that one has to include
the loss due to motion in the coordinate z, i.e., if the
impact angle approaches zero, most of the energy will be
dissipated into the normal direction. Our calculations,
however, indicate that this effect becomes only relevant
close to the critical impact angle α∗

t , below which the
island cannot be depinned by means of a low-frequency
excitation, see Fig. 4. In most of the cases, the power
dissipated in normal direction is small as compared to
that in lateral direction. This behavior can be expected
to be rather generic, as the normal contact stiffness is
typically much higher than the lateral contact stiffness.
Therefore, the fluctuations normal direction to the inter-
face will in most cases be small as compared to the lateral
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FIG. 4: Dissipated threshold power P ∗ as a function of the
impact angle αt. The two contributions P ∗

x
and P ∗

z
are shown

as well. Except for αt, all parameters are set to their default
values. At and below α∗t , the impact angle is too small to
initiate sliding due to transverse normal coupling. The criti-
cal angle α∗t , which follows from Eq. (20), is indicated by an
arrow.

fluctuations.

B. High-frequency limit

It may also be conceivable to assume that momen-
tum is transferred from the tip to the sample quasi-
instantaneously once per oscillation. Thus, unlike in the
previous section, the system is not driven adiabatically.
Since the tip frequency is the smallest frequency in the
system, the situation can conveniently be described as an
initial value problem. At time t = 0−, the island is sit-
ting in the point of minimum energy. It is then impacted
at time t = 0 by the tip and receives an initial kinetic en-
ergy ∆Einitial. Since the particle is pushed in x direction
and z direction, the initial velocity will have the lateral
component vx(t = 0+) =

√

2∆Einitial/m sinαt and the

normal component vz(t = 0+) = −
√

2∆Einitial/m cosαt.
Depending on the magnitude of ∆Einitial the particle
may have enough energy to escape its present location
and move on to another minimum or remain stuck at its
present location. Since the tip frequency is the smallest
one in the system, it may be reasonable to assume that
the island comes to rest before it is impacted again.

Within the harmonic approximation, lateral and nor-
mal motion decouple. Therefore, we may expect that the
system depins if the energy in the lateral motion is suffi-
ciently large to carry the island over the minimum energy
barrier ∆Emin given in Eq. (14). Using this simple pic-
ture, we would expect the separation between pinned and
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FIG. 5: The figure shows the regimes in which an initial
amount of (kinetic) energy ∆Einitial is sufficient or not suf-
ficient to move an adsorbed particle from its ideal position
towards the next minimum. The full lines were obtained from
simulations. Between the two full lines, the pinned regime and
the unpinned regime coexist. The dashed line is based on a
simple estimate of the separation line between both regimes.

unpinned at a value ∆E∗
initial

∆E∗
initial =

∆Emin

sin2 αt

. (30)

While this equation would be essentially exact in the one-
dimensional case, it can only provide a rough guideline in
higher dimensions for mainly three reasons: (a) Particles
constantly lose energy into the damping term while mov-
ing on the surface. Thus some (small) amount of energy
is lost before the first escape attempt. (b) The particles
will not move on the adiabatic or ‘optimum path’ and
hence they will most likely not cross the barrier at its
optimum point. (c) Because lateral and normal motion
couple, kinetic energy can be transfered from normal to
lateral motion. This can help the particle escape from its
minimum. If αt = 90◦, ∆E∗

initial will be underestimated
due to reasons (a) and (b). However, at sufficiently small
values of αt, one may also overestimate ∆E∗

initial due (c).
It nevertheless turns out that Eq. (30) provides a reason-
able estimate for ∆E∗

initial in our default system, provided
that tanαt is not smaller or in the vicinity of the (dif-
ferential) friction coefficient ∂Fs/∂Fl. This can be seen
in Fig. 5, where the pinned and unpinned regimes are
shown as a function of αt and ∆Einitial.

In Fig. 5, one can also learn that there is not a unique
separation line between ‘pinned’ and ‘unpinned’. The
upper and the lower curve simply state an upper bound
for ∆Einitial in the pinned phase and a lower bound for
∆Einitial in the unpinned phase. In between the two
curves, there are both ‘pinned’ and ‘unpinned’ regions.
Thus due to the lateral-normal coupling, an increase in

initial kinetic energy might not necessarily unpin the is-
lands in these regions.

The origin of the discontinuities in Fig. 5 is related to
the lateral normal coupling. Since the motion is not one
dimensional, there is no unique way to cross the barrier.
In particular, it can help the particle to rock back and
forth a few times before crossing the barrier when hit
under a small angle. This may shuffle kinetic energy
from the normal motion into lateral motion. Whenever
a new barrier-crossing mode sets in upon lowering the
impact angle, it has become beneficial for the particle to
rock back and forth n+1 times instead of n times before
crossing.

V. CONCLUSIONS

We studied the motion of an essentially rigid cluster
(nanoparticle) that is pushed over a substrate surface
under the influence of a tip impacting at an angle αt.
While the actual behavior of the particle will be more
complex than our model, which does not implicitly in-
clude elastic deformation of particle and substrate, we
believe that some generic ingredients are contained in
our model. Most importantly, the effect of the coupling
of normal and transverse motion is incorporated. Two
limiting regimes were identified in our model: An adia-
batic regime (“low-frequency limit”) and a momentum-
transfer regime (“high-frequency limit”). The mecha-
nism for power loss is different in the two regimes.

In the adiabatic regime, the viscous-type damping
forces determine the dissipated power. The impact angle
αt is rather irrelevant unless the critical angle α∗

t is ap-
proached below which the particle cannot be moved even
under an arbitrarily large external force amplitude. The
reason for the irrelevance of αt in the adiabatic regime
is that the amplitude in transverse motion can almost
always be expected to significantly exceed that of the
normal motion. Since normal and transverse damping
should be in the same order of magnitude, the loss is
mainly due to transverse motion. A critical angle α∗

t ex-
ists because increasing the external force does not only
push the island harder to the side but also deeper into
the substrate. This in turn increases the lateral force
that the substrate exerts on the adsorbed nanoparticle
and prevents sliding at αt < α∗

t .
In the momentum-transfer regime, the observed energy

loss mainly depends on the energy barriers in the system
rather than on the damping forces. This can be under-
stood in the following simplistic picture, which turns out
to provide a reasonable guideline provided the cantilever
period is the smallest characteristic time scale in the sys-
tem: The adsorbed particle is given an initial (kinetic)
energy each time it is hit. This energy is completely
dissipated before the particle is impacted again. The ini-
tially provided kinetic energy can be decomposed into a
longitudinal or into a transverse component. If the “lon-
gitudinal energy” exceeds the intrinsic barrier for sliding,
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then the system can (and will) depin.
We will now turn to the discussion of experiments

with an emphasis on Ritter et al.’s study.1 When ad-
sorbed nanoparticles or islands are manipulated non-
destructively in contact mode,2–4 then one will certainly
be in the low-frequency limit. However, in this case, the
friction forces can be measured directly anyway. Sim-
ilarly, we would presume this mode to apply to in the
experiments by Wang et al.5 and Miura et al.,7 where
the islands moved are essentially acting as spacers be-
tween tip and substrate, mediating the pressure exerted
by the SFM tip.

Conversely, when nanoparticles are moved in tapping
mode,1,6 it seems as if the energy barriers are the rel-
evant factor for the dissipated power, at least as far as
the islands with a size larger than 10,000 nm2 are con-
cerned. While it would be desirable to support such a
statement from simulations, given the simplicity of the
present treatment, the most convincing argument for this
assumption must come from the experiment itself. No
matter which model we assume for the interpretation of
the experimental data, the frictional stresses will turn
out to be roughly in the order of 108 Pa as can be de-
duced from Fig. 4 in Ref. 1. This value is many orders
of magnitudes larger than what one would expect from
any Stokes type damping mechanism given the moder-
ate experimental maximum velocities vmax of the islands.
(This statement is easily supported by estimating the
slip time τslip, which – being the inverse of γ – is a
measure for damping.8 Equating the dissipated power P
with mv2/τslip and using the available experimental data
yields a value of τslip ≈ 10−17s, which is about 5 orders of
magnitudes smaller than the smallest period of a phonon
in the materials involved and thus unphysical.) Hence
one can rule out the low-frequency limit to be applica-
ble. Of course, as discussed in Ref. 1, only sufficiently
large islands that are internally strained show measur-
able threshold power, while small, homogeneous, disor-
dered particles are displaced extremely easily. As Ritter
et al. find a rather well-defined value for the threshold
power of an individual island (at least for the second,
third, and consecutive depinning events) and since the
islands move easily once this power is exceeded, the data

is consistent with a picture in which the nanoparticles
explore the energy barriers that need to be overcome to
invoke sliding.

An interesting aspect of the experiments by Ritter et
al. is that due to their new approach, the experiments
open possible avenues to investigate the frictional prop-
erties of a nanoscale contact between atomistically flat
surfaces. If A is the contact area of the flat interface
between unlubricated three-dimensional solids, assuming
that at least one of the two surfaces is disordered and that
no plastic deformation occurs, theoretical arguments in
Ref. 11 suggest that the friction force should be propor-
tional to

√
A (interfaces between perfect crystals behave

differently17). Assuming the antimony island is disor-
dered in each trial, by sampling various island sizes, it
would in principle be possible to verify this claim. Such
experiments could provide a more direct test of the

√
A

hypothesis than earlier SFM experiments that typically
used curved tips and hence involved more complicated
contact mechanics (see, e.g., 18–22). However, the Rit-
ter results, which cover island sizes between 10,000 nm2

and 110,000 nm2, feature a linear dependence of the dis-
sipated power on the contact area. As an explanation,
the authors speculate that the nanoparticles manipulated
within their study are already too big to move as essen-
tially rigid bodies, and dissipation by elastic multista-
bilities might consequently be the cause for the observed
relatively high dissipation. Moreover, the particles above
10,000 nm2 are internally strained while the particles be-
low 10,000 nm2 appear unstrained, which supports this
interpretation. Nevertheless, their study indicates that
small islands below 10,000 nm2 might be small enough
to move as rigid bodies. Such islands, however, were not
explicitly included in their present study.
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