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Conditions for static friction between flat crystalline surfaces
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The conditions for the presence of static friction between two atomically smooth crystalline surfaces are
investigated. Commensurate and incommensurate walls are studied. While two commensurate walls always pin
at zero lateral force and positive pressures, incommensurate walls only pin if mobile atoms are present in the
interface between the surfaces or if the solids are particularly soft. Surprisingly, static friction can be observed
between rigid surfaces, either commensurate or incommensurate, that are separated by a freely diffusing fluid
layer.

[. INTRODUCTION limit of high confining pressures where the hard-sphere in-
teractions between wall and film atoms dominate. If the sur-
Recent studies have revealed interesting transitions in thiaces are aligned and translated so that all surface atoms are
shear response of many fluids when they are confined belirectly above each other, they create a periodic array of
tween crystalline surfaces that are only a few nanometeriarge openings that can accommodate film molecules. Any
apart:~1° Even though thick films are simple fluids at the relative displacement of the commensurate walls greatly re-
imposed pressure and temperature, a yield stress or statitices the volume of these openings and is resisted by the
friction is observed when the film thickness is decreased to &ard-sphere repulsion between wall and film atoms. This can
few molecular diameters. This is generally assumed to refledie expected to prevent translation of one wall relative to the
a transition to a solid-like state of the film due to the bound-other until a yield stress is exceeded. Note that individual
ing walls. In some experiments there is a continuous diverfilm molecules should still diffuse freely because there is a
gence of the viscosity and relaxation time that is typical of &finite activation energy for motion between openings. This
bulk glass transitiol.Other experiments show a sharp onsetdiffusion does not affect the equilibrium positions of the
of the yield stress that is more akin to a first-order liquid towalls because all openings are equivalent.
crystal phase transitiolf. Simulations have found both types ~ The situation is very different when the walls are made
of transition depending on factors such as the relative size dhcommensurate by a relative rotation. Because the walls
wall and fluid atoms and the molecular structure of theshare no common periodicity, all possible relative positions
fluid.*° They also reveal that solid films transform back into of atoms on the two surfaces are sampled with equal prob-
a fluid state when the yield stress is exceeded, explaining thability. Each opening is slightly different and all displace-
stick-slip motion observed in some experiments. ments of the walls produce the same distribution of open-
There is, however, an important difference between mosings. It is well known that this symmetry under translation
simulationd=® and experiment&:2° Surfaces used in com- can lead to a vanishing yield stress and free diffusion of the
puter simulations are typically commensurate, i.e., sharvalls in the absence of a thin intervening fild1:*However,
common periodicities. In fact, most simulations use identi-recent computer simulatiotsindicate that a film can pin
cal, aligned crystals for the two walls. Many also set theincommensurate surfaces together, providing a natural expla-
number of atoms between the surfaces to an integer multipleation for the observation of static friction in experiments.
of the number of atoms in one surface layer, facilitating the The simple picture for submonolayer films is that mol-
formation of ideal crystals. This cannot reflect typical ecules search out the best set of openings for the given wall
experiments—even those between nominally identical surpositions. They then resist translation of the walls because
faces. The reason is that the crystallographic orientation athese openings will be constricted by any translation. Al-
the surfaces is rarely controlled, and any small orientationathough there is an equivalent set of openings after transla-
misfit between otherwise identical surfaces makes thention, these may be far away and only reached via a complex,
incommensurat&!® There is no well-defined crystalline coordinated reshuffling of the molecules with a large activa-
state of the film that can simultaneously lock into registrytion free energy.
with two incommensurate surfaces. Some of the interactions This type of pinning is much more subtle than that be-
between the wall and fluid atoms must be frustrated, and theveen commensurate walls, and one may wonder whether it
dynamics and statistical properties of the system may be apersists in the thermodynamic limit. For example, diffusion
tered qualitatively due to this frustration. of individual molecules necessarily takes them to inequiva-
The contrast between commensurate and incommensurdent openings where they produce a different force on the
cases can be illustrated by considering a submonolayer filwalls. This will lead to a small displacement of the walls in
of molecules between two identical crystalline surfaces in theny finite system, and accumulated motion of individual film
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molecules might cause gradual diffusion of the walls thatwhereR,=1.50 andk=30e/ 2. All quantities are expressed
remains relevant in the thermodynamic limit. in units of o, €, and the massn of one monomer. The

In this paper we will investigate the conditions that deter-characteristic time i$_ ;= Vmao?/e. Unless stated otherwise,
mine whether two surfaces are pinned together in the ther- =25
modynamic limit. The most sensitive technique is to consider The lattice sites of the bottom wall are fixed, while the top
the case where no force is applied in the direction tangentialall is allowed to move under the combined influence of the
to the walls, and to measure the relative displacement of thfvrce from the coupling springs and an external force on each
walls as a function of time. Finite systems will always show gttice sitef. A constant external forcé, is applied normal

diffusion at sufficiently long times due to thermal activation, i the top wall, and the tangential components of the external
just as the magnetic moment of finite systems will always > e
change sign. Hence it is crucial to consider the scaling of th lorcef, are set to zero to allow free diffusion in the plane of

mobility of the walls with system size in order to determineiha?fvrﬁgséxii?}g%ofneagsmoe;ssncg Itgeetrogfvgglnt]gat'rlﬁignclﬁoice
the behavior in the thermodynamic limit. y '

We present results for commensurate and incommensﬁlIIOWS the top wall to respond more rapidly than if we

: hoose a more physical mass of several layers. Transition
rate wall function of temperature and normal pr r X . :
ate walls as a function of temperature and normal pressu srtate theory and corrections to it show that the rate at which

In each case we compare results for bare walls to results fo barri d les EIM. leadi
walls separated by a submonolayer film. We find that bottfaruarng}{3 arriers aré crossed scales w 0 leading
rder:® By using a lighter mass we speed the calculations

commensurate and incommensurate walls remain pinneﬁ. . I X
even when the film molecules diffuse freely. One may expec\."”thOUt changlmg ?he qualitative behavior. e
that incommensurate walls undergo a transition from pinned I_3c_>th the diffusion of the top wall and the diffusion Of.
to unpinned with increasing temperature or decreasing preér-w"v'du"’II monomers are monitored. The mean-squared dis-
sure, but it is difficult to identify the transition with available Placements along andy are calculated separately, and then
system sizes. A general argument is presented that comme@veraged to getox’(t)), the mean-squared displacement
surate walls are always pinned even as the film becomes &ong a single coordinate after a timeThe results are also
near]y ideal gas, a|thougn the pinning force may becom@veraged over at least eight independent intervals of Iemgth
exponentially small. Thus observation of static friction be-  The equations of motion are integrated using a fifth-order
tween two commensurate crystals need not imply that th@redictor-corrector method with time stéyp=0.00%, ;. The
intervening film is solid as is often assumed. temperaturerl is controlled by coupling the monomers, and
In the next section we describe the model used in thavall atoms if mobile, to a Langevin thermostatThe fric-
simulations and the averaging techniques. Section Il pretional force in the Langevin equation is ymv wherev is
sents results for commensurate and incommensurate wall)e instantaneous velocity andis the damping rate. We use
with and without monolayer films. Our conclusions are sum-y=2t.;* so that the motion of the particles is well into the
marized in Section IV. underdamped regime. A small additional damping with rate
0.05y was added to the center of mass of the top wall. These
Il. METHOD dampings fix the free diffusion of the top wall in the absence
of any interactions with the bottom wall atDg
In this study, we have used the same model as in Ref. 14=k;T/2.05yM,,, wherekg is Boltzmann’s constant. Note
The walls arg111] surfaces of an fcc crystal, and therefore that the denominator gives the ratio of damping force to
have a triangular lattice structure. Atoms in the walls arevelocity for uniform motion of the top wall.
coupled to their equilibrium lattice sites by springs of stiff-
nessk. In the limiting case of rigid walls, the coupling is
considered infinitely stronge=«, and the atoms are con-
strained to their equilibrium positions. Periodic boundary e will present results for the simplest choices of com-
conditions are applied in the plane of the walls. The coordimensurate and incommensurate walls. In all cases the top
nate system is chosen so thxaandy are in the plane of the and bottom walls have the same structure and nearest-
walls andz is normal to them. neighbor spacingd=1.209. The size of the surfaces will

The molecules between the walls are short chains, eadpe expressed in terms of the numideof atoms per layer of
containing six monomers. All monomers interact with eachwall atoms. The ared is given by A=N\/3d%2. Thus to
other and with wall atoms via a truncated Lennard-Jone§onvert between the force on each atom and a pressure or
potential, shear stress, values bfshould be divided by 1.266.

In the commensurate case the walls are perfectly aligned,
V(r)=4el(alr)?=(alr)®]+V,, (2.1)  asifasingle crystal had been cut in two at the interface. The
, , . . incommensurate case corresponds to rotating the top wall by
wherer is the separation, and and o are characteristic  gge rg|ative to the bottom wall. However, the walls must also
energy and length scales, respectively. Wall atoms from oppe distorted slightly in order to conform to the same periodic
posing surfaces interact via the same Lennard-Jones potefgndary conditions. This means that the walls are not truly
tial. The potential is cut off at. and shifted bV, so that  jncommensurate, but the residual commensurability does not
V(rc)=0. Adjacent monomers on a chain interact via angppear to influence the results. As discussed below, the
additional FENE potentia amount of the distortion and the difference from ideal incom-
5 ) mensurate surfaces decrease with increasing system size.
Ven(r)=—(12kRyIn[1—(r/Ro)“], (2.2 For each choice of walls we will first consider the limiting

IIl. RESULTS
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case of rigid walls with no molecules in between. Then the 10° ,
constraint of rigidity is relaxed, and finally molecules are N
introduced between the surfaces. The presence of a sub- 107 p o AXe
monolayer film is enough to move the walls far enough apart % | DT Bxs
that there are no direct interactions between them. Any pin- Ay :3]222
ning must be mediated through interactions with the film. % o

The key question is to determine whether there is a po- A
tential that pins the lateral position of the top wall relative to el
the bottom wall. We define the following time-dependent
measureD(t) for the mobility of the top wall at time: 107 ; ; ;

107" 10° 1/to1 10 10°
2 Wty
B(y- W) (3.9 _ _
2tDy FIG. 1. Mean-squared displacement of top wall along a single

hereD- is the free diffusion constant of the ton wall and is coordinate{ 6x2(t)}, as a function of timé for commensurate walls
w lud dotl tlh utl' ial d . d.ﬁp".“ d It of the indicated sizes. Displacements are multiplied\ttp remove
!ncu e. 0 remove e. rivial decrease in di u_s'o,n ue. Othe trivial dependence on wall mass. Hdrg=1.2¢/0 and kgT
increasing wall mass asincreases. The top wall is pinned if _q g

D=lim lim D(t) (3.2 D~Dy[1— (AF/kgT)%8]. (3.4

t—oo N—ow

- o ) ) In the opposite liMAF/2kgT>1, the diffusion is activated:
tends to zero. ID remains finite, the wall is unpinned and
the productDD, can be interpreted as the long time diffu- D~Do(AF/2kgT)exp(—AF/kgT). (3.9

sion constant of the top wall. Since AF increases linearly with the area of the wall, the

motion will always be activated for large enough system

A. Commensurate walls sizes, and will vanish exponentially in the thermodynamic

1. Bare surfaces limit. However, one may need very large system sizes to
o . reach this limit for reasonable parameters.

If the surfaces are infinitely rigid, the only degrees of  Figyre 1 shows the mean-squared displacement of the top
freedom are associated with the location of the center ofy4 (x2(1)) as a function of time forf,=1.2¢/o, kgT
mass of the top wall. Each atom on the surface of the 10p-( g¢, and the indicated wall sizes. The mean-squared dis-
wall _feels exactly the same potential and force from at- placements are multiplied byl to remove the trivial depen-
oms in the bottom wall. The total force on the center of masgyence on wall mass. This collapses the data at early times
coordinate is a periodic function of the lateral displacementhere the walls move ballisticallyox?(t))=t2. At longer ’
that grows linearly withN. In the thermodynamic limit, an  imes the smallest system shows a simple crossover to diffu-
infinite activation energy is needed to displace the wall and;i,e motion (5x2(t)) = 2Dt. The value of the diffusion con-
there can be no d|ffu3|qn. o stant is nearly equal to the value for free diffusi@n,. As N

Relaxing the constraint of infinite rigidity does not changencreases, a plateau develops between the ballistic and diffu-

the linear scaling of activation energy witl, although it gjye regions, and the diffusion constant decreases.NBy
may lower the prefactor. In our system, decreaStmylovys =144 the wall is completely pinned over the length of the
atoms to translate relative to the center of mass coordinate | mulation, although any finite system will eventually dif-

order to lower their energy. There is no change in the groung se ‘These results are just what would be expected from Eq.
state energy, but the energy of transition states is decreas :3) with AFcN. For small systems\F/2kgT may be so

At finite temperature, thermal displacements further decrea uch less than unity that free diffusion is observed. How-

the activation free energies. Due to the strictly harmonic Naayer asN increases, the motion becomes activated, Bnd

Fure of the spring'_s, the mptions of thg independgnt atloms adairops precipitously.

incoherently to yield a single effective Langevin noise and ¢, e 2 jllustrates this behavior for a number of normal
damping term on the center of mass. Thus the problem magg; o5 The diffusion constant is plotted as a function of the
|nto_d|ffu3|on of a single, damped patrticle in a periodic PO- Lumber of atoms in a wall layeN for k=100~ 2 and
tential U, where U depends on the temperature, pressurekBTZO_&_ The free diffusion constarid, is indicated by a

and«. solid line. In each cas®) was evaluated from the tine to

Diffusion in a periodic potent|l%l has been studied in greatyicy e 5 distancer along one of the coordinates parallel to
detail by a number of authot§!° The general trends are the walls using the relatioB = o-2/2t
= .

illustrated by the results for the simple case of diffusion of a At the lowestf, andN, D decreases roughly asNLand is

par_ticle ina one—dimensiqnal sinusoidal pote_ntial with acti—nearly equal to the value for free diffusion. Asincreases,
vation é%nergyAF. In this case the diffusion constant there is a rapid drop iD, indicating a crossover to activated
satisfie behavior. The success of E.3) in describing this cross-
_ -2 over is illustrated by fits to the results féy=0.1 and 0.3/ o
D=Dollo(AF/2ksT)] 33 (broken line$. Increasingf, moves the crossover to acti-
wherel , is the modified Bessel function. Whexi=/2kgT is  vated behavior to loweN, indicating thatAF rises withf, as
small, the particle diffuses almost freely: well asN. This is entirely consistent with the linear relation
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FIG. 2. Diffusion constant calculated from the time to move by FIG. 3. Mean_squared disp|acement a|ong a Sing]e coordinate,
o as a function of the number of atoms per whlkt the indicated  (5x(t)), of individual monomers and of top wall as a function of
values off,o/e andkgT=0.8¢. A solid line shows the free diffu- time t at f,=10e/0 andkgT=0.8¢. The walls are commensurate
sion constanb,. Dashed and dot-dashed lines show fits to (B) andN= 32X 32.
for f,=0.1 and 0.8/, respectively.

between static friction and pressure that is found for comcould be observed. Oscillations around the equilibrium posi-
mensurate surfac&sand for incommensurate surfaces sepation led to a mean-squared displacement that saturated at
rated by adsorbed layet8. 5.0 10 5¢2. This and the temperature can be used to esti-
The main lesson to be learned from Fig. 2 is that while itmate the effective spring constant for the local free energy
is easy to determine that a system is pinned, there is nBlinIMuUM of xes=15.6¢/0* per wall atom. An estimate of
simple way to prove that a system is unpinned in the therthe static frictionF in the x direction can then be obtained if
modynamic limit. Relatively large systems can appear to dif-one makes the simplest assumption for the form of the peri-
fuse freely, even under conditions where systems becomedic variation of free energy witk, leavingy unconstrained.
pinned in the thermodynamic limit. The reason is that theThe period is given by the distance alorgo the nearest
activation energy fof ,= 0.1¢/ o is small, which is due to the €quivalent minimum. For a triangular surface this is half of
large average distance between the walg)=1.214. This  the nearest-neighbor spacidgUsing a single Fourier com-
value exceeds the value for the interaction cutoff radius oponent to represent the free energy we haléx)
re=2"° Thus the probability of an atom in the top wall — —F, cos(4rx/d). The static friction is given by the maxi-
having a nonzero interaction with the bottom wall at any mum force, i.e., the maximum of the first derivative ff

given instant is very small. The maximum of the second derivative gives;. Using this
2. Submonolayer lubrication and the valug Ofices from gbove, we obtairk = Keﬁdlz}w_
] =1.5¢/0. This agrees quite well with the actual friction
The two commensurate walls considered here contaifyyce of F ~1.4¢/ o that we obtained in an independent run.
32X 32 atoms in each surface. The film in between consistgowever, we note that our arguments are too rough to expect
of 42 chain molecules each containing six monomers. Thighis level of agreement, because geometrical factors and
corresponds to 1 monomer for every 4 atoms on each walhigher harmonics in the free energy have been left out.
and is r(_)ughly 1/4 of an equilibrium monolayer. Th_e bottom  "The walls never approached close enough to intedact
wall is fixed and the normal force on each atom in the tolorectly. Hence, the pinning of top and bottom wall was medi-
wall f,=10e/o. This correspongs to a normal presspe  ated by the film in between, which was freely diffusing in a
=7.96¢/o°. The tangential forcé =0, andkgT=0.8¢. For  lattice-gas-like state. This result may seem rather counterin-
comparison, we note that the triple point of monomers withtuitive. The observation of a yield stress in surface force
long-range interactions {— =) is atkgT=0.7e. apparatus experimerits®is often assumed to imply that the
In Fig. 3, the motion of the top wall is compared to the thin film confined between the surfaces has entered a solid
motion of individual monomers in the chain molecules. Thestate. This clearly need not be the cdshe two surfaces are
interpretation of the dynamics of the monomers in Fig. 3 isaligned into a commensurate configuration. More generally,
as follows. For time$<5xX 10 2t ; the monomers are in the the ability of crystals to resist shear does not depend on a
ballistic regime( 8x3(t))«t2. For times 0.5/t ;<10° the lack of diffusion, but rather the presence of long-range order
monomers exhibit subdiffusive behavior that indicates theythat produces Bragg peaks. In certain crystals, e.g., ionic
are initially trapped near a single energy minimum in theconductors, the diffusion of some species can be quite rapid.
periodic potential provided by wall atom5At t=10%,;, a As long as the density modulation measured by the Bragg
monomer has typically movedosd, which approximately cor- peaks remains, the system can resist shear.
responds to the distance between two equivalent minima in A simple argument shows that two commensurate walls
the periodic potential. At longer times the motion of the should be pinned in the thermodynamic limit at Blandf,.
monomers approaches diffusive behavior, where the mear-he reason is that the periodic potential of a single wall
squared displacement grows linearly with time. Thus thenduces a commensurate density modulation parallel to the
monomers act like particles in a lattice gas, hopping betweewall in an adjacent filnf? The magnitude of the density
minima in the wall potential. modulation will decrease exponentially with distance from
During the entire length of this simulation the top wall the wall, but remains finite. If there is a commensurate wall
remained stuck in one minimum and no diffusive behaviorat some distanchk, the energy will necessarily depend on the
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FIG. 4. Mean-squared displacement of top wall along a single
coordinate{ 5x2(t)), after timet=200Q,, as a function off, at
kgT=0.8¢. The walls are commensurate aNd- 32X 32.

FIG. 6. Mean-squared displacement of top wall along a single
coordinate{ 8x2(t)), as a function of time for different couplings
« of wall atoms to their equilibrium positions. HelgT=0.1¢,

registry between the density modulation and the wall Iatticez;&gég’ andrc=2.2s. The walls are incommensurate aht
Thus there will always be a periodic force that pins the wall '

and that grows linearly with system size. However, the fre§ontorova (FK) models and many examples have been
energy barrierAF will decrease exponentially with, and  stydied!?*3In the limit of infinite, perfectly rigid walls it can

the size of the system must increase proportionately in ordeje shown that the free energy barrier for sliding motion is
to reach the thermodynamic limit. Oureconclusions are CoNgyactly zero if the walls are incommensur&e? Thus the
sistent with simulations by Currgt al,” who considered 4, \ya| will diffuse freely in the thermodynamic limit. Fi-
films that were several layers thick and found a periodicyjte systems with periodic boundary conditions, like those
pinning force even when there was rapid diffusion within theqngjdered here, can never be perfectly incommensurate. The

fiIm.' . . - order of commensurability can be measured by the smallest
Figures 4 and 5 show that simulations witfixedsystem iyieqerq that allows the ratio of lattice constants to be ex-

size exhibit amppar_enttransition from pinned to dep_inned pressed asp/q, where p is also an integer. Theoretical
as f, decreases of increases. The mean-squared displacet ) cylationd® 2 suggest thaAF vanishes exponentially fast

ment after 2000, is plotted as a function df, or T. AtlIow it increasingg. If the highest possible value fis chosen

f, or high T the mean-squared d|sp2Iaceme£1t IS consistenfor each system size, then the total value A should
with the value for free diffusion{ox%)~10c". Thus for \anish in the thermodynamic limit at least as fast as
these parameters and at this system fifeis much less c,Nexp(=c,N), where thec; are constants. Thus our
thankgT [Eq. (3.3 ]. However, as noted for dry commensu- iy jations should show the same behavior as truly incom-
rate walls, this is not enough to establish that the systeMensurate systems in the thermodynamic limit.

remains unpinned in the thermodynamic limit. A di- As the constraint of perfect rigidity is relaxed, it becomes
verges in the limitN—ce, the system will be pinned in the ,qqible for two incommensurate walls to lock into a com-
thermodynamic limit. Our results are consistent Wit o5 periodicity!> '3 There is a transition at a critical value of
*N at all f, andT. Simulations with largeN show a con-  {he ratio of the strength of the intersurface potential to the
sistent shift of the apparent transition to free diffusion t0jyermg stiffness of the walls. This would correspond to the

lower f, and higherT. ratio AF/No?« in our simulations. The critical value de-
pends on the shape of the potential and the ratio of lattice
B. Incommensurate walls constants, and has mostly been determined for one-

dimensional systems.
To illustrate this behavior we consider two incommensu-
Models of the friction between two surfaces with different (5e \walls of size 3% 36 atoms and vary the wall stiffness
length scales are generically referred to as Frenkelppe wall is rotated by 90° with respect to the other wall.
Then small strains are applied to make the resulting surfaces
square so that they share the same periodic boundary condi-
tions. Unlike the other simulations presented here, we use a
long cutoff radiusy .=2.20-, for the Lennard-Jones potential
between atoms on different walls. One consequence of this is
that there is an effective normal force on each atom due to
the adhesion of the surfaces that is of ordar. We used a
small external forcd,=0.1e/c and a low temperaturkgT
=0.1e so that thermal fluctuations are small.
= In Fig. 6, the mean-squared displacement of the top wall
10 Kk Tle 10 is plotted against time. For<10e/ o> the top wall is pinned
? and the mean-squared displacement saturates at a very small
FIG. 5. Mean-squared displacement of top wall along a singldraction of a lattice constant. Direct observations of atomic
coordinate { 5x3(t)), after timet=200Q ; as a function ofT atf,  positions show that atoms have undergone large rearrange-
=0.75%/0. The walls are commensurate aNe- 32X 32. ments from their initial lattice sites in order to lock together

1. Bare surfaces
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FIG. 7. Mean-squared displacement along a single coordinate, F!G- 8. Me?n-squared displacement of top wall along a single
(8x¥(1)), of individual monomers and of top wall as a function of coordinate{6x(t)), as a function of time for two dl_ﬁerent nor-
time t atkgT=0.8¢ andf,= 10/ for incommensurate walls with Mal forces andgT=0.8¢. Bottom and top wall are incommensu-
N=31Xx 36. rate and\N=31X 36. The straight line is a fit to a power law with

a=0.194+0.004.

in a free energy minimum. For ak=25¢/0?, the walls
follow nearly identical curves, and the asymptotic behaviorparameters f(,=10e/ o, kgT=0.8¢) as the commensurate
is consistent with the free diffusion constabp. Note that  system of Fig. 3. Note that individual monomers are much
there is a smooth crossover from ballistic to diffusive motionless mobile at long times when between the incommensurate
with no subdiffusive regime like that found for monomers walls. Presumably this is because commensurate walls pro-
between commensurate wallsig. 3). This indicates that duce long channels of relatively wide openings between par-
there is no potential well that temporarily locks the surfacesallel lines of atoms on opposing walls. Incommensurate
together’! Our results for commensurate systems show thawalls produce a more random environment with fewer large
the above findings are not enough for us to conclude that thepenings between atoms on opposing walls.
top wall would remain depinned in the thermodynamic limit ~ The incommensurate walls themselves move further and
at k=25¢/0?. However, in contrast to the commensuratemore rapidly than commensurate walls. As a result there is
systems, increasing the system size does not change the clear time separation between the motion of monomers
value of k where the transition occurs. If there was a finiteand walls in the incommensurate case at thisOver the
AF that scaled withN this shift would be evident. time interval shown the top wall appears pinned, because the
We can use the Lindemann criterion to estimate what motion is subdiffusive, and the total distance moved is less
should be in order to model a Lennard-Jones crystal. In ordethan 10% of a lattice constant. The monomers have also
to have an rms displacement of 10% of the nearest-neighbanoved less than a lattice constant and exhibit subdiffusive
spacing at the triple pointkgT=0.7¢), we must havex motion.
~140¢/o?. This is well into the range of values where we  Figure 8 shows how the diffusion of the top wall changes
find free diffusion. In order to see pinning for realistic valueswith decreasing normal force. As in Fig. 7 the walls move
of k, the interaction between the walls must be increasedpallistically up to a timet~1. The distance traversed in-
relative to that within the wall§i.e., «). This can be done by creases a$, decreases. At longer times, motion is subdiffu-
increasing the normal force. sive and the curves are roughly parallel on a log-log plot. For
Note that our use of springs connected to lattice sites is af,=4, the mean-squared displacement can be described by a
Einstein approximation to an elastic crystal and does nopower law{&x?(t))=t®, for at least three decades of time.
treat long-wavelength elastic deformations accurately. HowAn exponent ofa=0.194+0.004 is obtained.
ever, the displacements required to lock two lattices together As in the commensurate case, there appears to be a tran-
have relatively short wavelengths, and simulations with moresition from pinned to depinned af, decreases off in-
accurate elastic models yield the same transition from deereases. Figures 9 and 10 show the mean-squared displace-
pinned to pinned with an increasing ratio between the
strength of inter- and intrawall interactiofs™ R

2. Submonolayer lubrication

i
As above, two identical walls were made incommensurate AT ]
by a rotation of 90°, and then strained slightly to fit square g 0E E
periodic boundary conditions. As for the commensurate case, o ]
the film contained about 1 monomer for every 4 atoms in Y

each wall layer or about 1/4 of a monolayer. Unless other- 0F 3

wise noted, the walls contained 8B6 atoms each, and there el T

were 46 film molecules containing six monomers each. We 107 10° 10! 10°

chose to consider the most difficult case for pinning bare 20

surfaces, completely rigid walls«E ). FIG. 9. Mean-squared displacement of top wall along a single

We first compare the diffusion of the top wall to that of coordinate(6x3(t)), after timet=2000t, ; as a function off, at
individual monomers. Figure 7 shows results for the samé&gT=0.8¢. The walls are incommensurate aNe= 31X 36.
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102 ¢ — e smaller wall shows a simple crossover from ballistic to dif-
o' L =31 x36 S ] fusive motion, while the larger wall shows subdiffusive be-
o F O62x72 /,'/ 5 ] havior and seems to stop moving at long tim@he step in
13100 v the datz_i at a few hundreg; is a re_sul_t of a rare, relatively
g 10t // o ] large @splacement of the V\{c’:)".ThIS.IS the same typ.e of
2 g § oo ] behavior that was seen for increasing system size in com-
w0k /o® 3 mensurate systems. It indicates that there is a fikFethat
v w0l . 8 ] grows with N causing motion to ;top asAF rises above
L 1 kgT. One can conclude that the incommensurate walls are
e P I pinned in the thermodynamic limit for these parameters.
kgl/e The apparent transition between pinned and depinned

states continues to shift to high&r(Fig. 10 and lowerf,

vith increasingN for the largest systems we have been able
to study. However, we have no analog of the argument for
commensurate walls that suggests that incommensurate walls
should be pinned at all and f,. The density modulation
produced by one wall will be incommensurate with the op-
posite wall and produce no net energy shift. Locking be-
C{(?vrxgeen the two surfaces must enter as a higher-order suscep-
ility that is difficult to calculate. Foff ,<kgT/o the walls

ove far apart and the molecules form an increasingly ideal
gas. It seems reasonable that the depinning force would van-
ish in the thermodynamic limit under these conditions, but
his remains an open question.

FIG. 10. Mean-squared displacement of top wall along a singl
coordinate,{ 5x*(t)), after timet=5000t; as a function of tem-
perature for two different system sizesfat2¢/o. The results for
the larger wall were multiplied by a factor of four to remove the
trivial dependence on wall mass.

ment after 2000 ; as a function off, and T, respectively.
Note that the displacement changes over a somewhat broa
range than in the corresponding figures for the commensys
rate walls(Figs. 4 and & The transition is also at a lowdr
and higherf,, indicating that it is more difficult to pin the
incommensurate walls. This is consistent with our studies o
the static frictiont* which is roughly proportional td F. We
found that submonolayer films between commensurate walls
gave three to five times larger friction forces than incommen- IV. CONCLUSIONS
surate walls under similar conditiofi. _ -

To test whether the transition from pinned to depinned is W€ have performed a systematic study of the conditions
real, we performed simulations with larger walls at the samd©! Pinning of commensurate and incommensurate walls.

film density. Figure 11 compares results for walls containing-ll;he case of bare walls is relatively straightforward and has
31x36 atoms and 6272 atoms atf,=2e/o and kgT een considered previously. However, examination of the

=0.8¢. Note that the monomer diffusion is nearly identical SC&ling of the diffusion with system sie, temperaturef,

at the two system sizes, and shows a clear diffusive regiofNd normal forcef, provides a useful benchmark for our
(slope of ong at the longest times. This implies that the studies of submonolayer films. Bare commensurate walls are

energy landscape that monomers move through is not infl@Ways pinned by a periodic potential that grows with system
enced by system size. In contrast, there is a striking siz&/2€- However, relatively large systems can appear unpinned
dependence in the dynamics of the top wall. The trivial sizd' the potential is small enough. Incommensurate walls are
dependence of the free diffusion constadgxN, has been completely unpinned unFll they become so deformable that
removed by multiplying the mean-squared displacement of1€Y ¢an rearrange by distances of ordeto accommodate
the larger wall by four. This collapses results for differentthe 0Pposing wall.

sizes in the ballistic regimet€ 10t, ;). At larger times the Commensurate walls remain pinned when a submono-
layer film is introduced between them. A general argument

102 e e e was given that this pinning should always exist, and our
E - top wall (31 x 36) f results show that even when the film becomes a gas the walls
101 [ otopwall (62x72) ® ] do not diffuse in the thermodynamic limit. However, the
N Pididiodioiecel @f pinning is very weak and one has to go to large system sizes
100 L @f to detect it. Curry and coworkers have also seen pinning of
N§ y i ] commensurate walls by diffusing filnfs.
AL ® M Introducing a submonolayer film can pin incommensurate
10_2; @f g vyalls, even when th'ey are completely rigid. In the Introduc—
) - tion we noted that diffusion of a monomer to an inequivalent
1073 i vt i i ] site should cause a displacement of the top wall in any finite
107 107" 10°t/t 1" 10° 10 system, and wondered whether such displacements might ac-
LJ

cumulate into diffusion of the top wall. However, the mono-

FIG. 11. Mean-squared displacement along a single coordinatdner will In genera! d'ffuse to a site that minimizes its energy
(8%2(t)), for the top wall(squaresand monomerscircles at two for the given position of the top wall, and thus add to the
different system sizes withi,=2¢/o and ksT=0.8¢. The mean-  Potential energy barrier that pins it. Our results are consistent
square displacement of the larger top wall has been multiplied by &ith a pinning potential that is linear iiN, just as in the
factor of four to be compatible with the small system in the ballistic commensurate case. Independent studies of the static friction
regime, and the larger system contained four times as many filnas a function of system size confirm this linear relatibn.
molecules(184). The behavior of incommensurate walls in the thermody-
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namic limit is very important to the study of static friction, large enough areas. It remains to be seen whether there is a
since contacting surfaces are almost never commensurategansition to a depinned state as the layer is made thicker by
Our studies confirm previous wdrk'3in showing that bare lowering pressure, increasing temperature, or introducing
incommensurate walls are very unlikely to exhibit static fric- more molecules between the surfaces.

tion in the thermodynamic limit. Surfaces are also very un-

likely to be bare, especially if expo_sed to air. Our results ACKNOWLEDGMENTS
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