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ABSTRACT

When two solids are in relative sliding motion, the intervening layer separating the two
surfaces (for example the boundary lubricant) is typically far from thermal equilibrium.
With the help of a generic model reflecting the boundary lubricant, it will be shown that it
is often not possible to characterize a sliding contact by means of a single effective tempera-
ture. The reason is that the probability distribution (PD) of microscopic variables differs in
a characteristic fashion from equilibrium PDs. Non-equilibrium velocity PDs are not Gaus-
sian but tend to be exponential, thus favoring rare events. Leaving dynamic equilibrium
by non-uniform sliding conditions leads to yet additional effects, in particular to enhanced
dissipation. This is shown in a model describing rubbing polymer brushes in good solvent
conditions. Shortly after returning the sliding velocity, the brush interdigitation is distinctly
larger than during steady-state sliding. Based on this observation, predictions can be made
at what amplitude the loss is maximum for a given driving frequency.

INTRODUCTION

An important issue in tribology is the question what the mechanisms are that lead to
energy dissipation [1] and how we can characterize the microscopic state of a sliding con-
tact. Of particular interest are those sliding contacts in which the friction force does not
vanish linearly with the shear rate for mainly two reasons. First, from a practical point
of view, this behaviour is typically observed between virtually every pair of macroscopic
bodies. Secondly, non-linear friction-velocity relationships clearly indicate that the systems
cannot be treated within linear-response theory. This makes them interesting to study from
a theoretical point of view. Many different scenarios have been suggested that result in
non-linear friction-velocity relationships. A non-exhaustive list includes plastic deformation,
self-healing cracks, elastic and mixing instabilities, as well as instabilities in boundary lubri-
cants [2]. All these mechanisms have in common that the system is pushed far away from
thermal equilibrium and that energy is lost as heat when the system relaxes or is trying to
relax towards equilibrium.

While all above-mentioned processes are relevant to many different tribological aspects
(i.e. wear), it is tempting to hypothesize that most of the energy gets dissipated in the
boundary lubricant. First, it has been known since the works by W.B. Hardy in the early
20’th century that the application of a molecular thin layer of lubricant can change the
friction forces between metals by almost an order of magnitude [3]. Second, a contact
'breaks’ and hence dissipates energy at its weakest link, which is the boundary lubricant
(BL). The reason for this is that interaction between the BL particles are physical, while the
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Figure 1. Schematic drawing of the mechanism by which a boundary lubricant locks two surfaces

together, whose intrinsic corrugations do not match. From reference [7].

interactions in the confining solids are much stronger, because the intrabulk forces are due
to either metallic, covalent, or ionic bonds or a combination thereof. Thus, the yield stress
of the (solidified) BL should be smaller than that of the two surrounding solids.

Since Hardy, experimental techniques have made it possible to study the response of
molecularly thin films to mechanical forces under ever better-controlled conditions [4,5]. It
has yet remained an unsolved challenge to measure the atomistic structure of lubricants
and to visualize the processes that cause Amontons’s and Coulomb’s laws of friction. New
insights into the atomistic structure of mechanical interfaces could nevertheless be gained
with the help of computer simulations. In particular, it could be shown that a BL is able to
conform to the atomistic surface corrugation of both walls simultaneously. For this reason,
two solids can lock at an atomic scale [6,7], see also figure 1. This 'locking-together’ explains
static friction. However, does this mechanism necessarily lead to ’typical’ kinetic friction,
i.e., to a law in which the kinetic friction Fj is not linear in the sliding velocity vo? In the
first half of this contribution, I intend to address this question, among other issues. For
that purpose, I will discuss a generic model for a boundary lubricant in which a mechanical
contact is mimicked by means of two confining crystalline walls plus the embedded boundary
lubricant. One of the central questions will be how one can characterize the microscopic state
of an embedded system under constant sliding velocity.

If deviations from thermal equilibrium lead to non-linear friction-velocity relationships
under steady-state sliding conditions, what are the consequences if we go even further and
consider sliding conditions that are unsteady? I will address this question in the second part
of the present contribution. In that discussion, a different model system will be studied.
It consists of two solids, which both have polymers chemically grafted onto their surfaces.
The polymers are immersed in a good solvent and form so-called brushes, which will then
slide against one another. The simulations of the friction between such polymer bearing sur-
faces were also motivated by experimental studies by Granick, Cai and coworkers [8,9], who
found enhanced dissipation between polymer brushes for certain driving amplitudes at fixed
frequency or alternatively, enhanced dissipation for certain frequencies at fixed amplitudes.
The origins of this increased friction were discussed controversially in the literature [10,11].

The main part of the reminder of this contribution will consist of two parts. In the first
part, the kinetic friction due to boundary lubricants will be discussed, in order to under-
stand how the deviation from thermal equilibrium can effect the frictional forces between
two solids. In the second part, the kinetic friction between polymer brushes will be reviewed
with an emphasis on the effects of non-uniform driving. Finally, we will conclude with a
general discussion.
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Figure 2. Trajectory of a lubricant impurity in the xy-plane tagged between two incommensurate
surfaces. The relative velocities of the walls in Lennard Jones units is vg = 10~3. The positions are
plotted every At = 0.5. The unit of length would translate to approzimately 3 A and that of time
to 3 ps. The bar denotes 100 times the average drift distance per time interval At. The arrows
indicate dynamical instabilities. From reference [12].

KINETIC FRICTION DUE TO BOUNDARY LUBRICANTS
General comments

As argued in the first paragraph of the introduction, deviations from thermal equilibrium
result in friction that is in contradiction with Stokes’ law F' o< v. A model which illustrates
non-linear friction very nicely is the model by Prandtl and Tomlinson [2]. They considered a
surface atom that is pulled over a corrugated substrate via a compliant spring. If the spring is
sufficiently weak, then at some instances in time, the atom becomes unstable and ’pops’ into
the next available potential energy minimum. This process occurs in regular intervals, for
example (but not necessarily) each time the spring has moved by one lattice constant. Each
time an atom pops, (the same amount of) energy is lost. This produces a kinetic friction
force that is (essentially) independent of v as the lost energy would be proportional to the
covered distance. For a review of this process, including the role of thermal fluctuations
invoking logarithmic corrections, I refer the reader to reference [2].

From the discussion of the Prandtl model in the previous paragraph one can learn that
instabilities (or plucking motion) leads to laws that can deviate strongly from regular linear
response. However, the detailed dynamics of realistic systems may be very different from that
in the Prandtl model. For instance, if we consider the motion of adsorbed atoms between two
incommensurate walls that slide past each other, we cannot expect trajectories as periodic
as those in the Prandtl model. Indeed, the motion of atoms that are confined between two
incommensurate walls is rather erratic [12], as can be seen in figure 2.

Each time an instability occurs, potential energy is first converted into kinetic energy,
which ultimately will be dissipated into heat. While figure 2 shows that confined boundary
lubricant can show the necessary plugging motion similar to that in the Prandtl Tomlinson
model, it has been noted that plugging motion does not necessarily take place in boundary
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Figure 3. General tribological behaviour of an extreme boundary lubricant as shown by the scaled
kinetic friction F}}(v) normalized by the athermal zero-velocity limit Fy = Fi(v = 0,7 = 0) as a
function of renormalized velocity v*. The reference temperature in this plot is T = 0.07. A linear
law Fy(v) o< v corresponding to the linear-response theory is included for comparison. In order to
achieve superposition of the rescaled curves, the contribution Fy(v,T = 0) — Fx(v = 0,7 = 0) had
to be subtracted from the friction forces. From reference [13].

lubricants [13]. For instance, if only few boundary lubricant (BL) atoms are present between
two commensurate surfaces, there will be barely any instabilities. (Details depend on whether
or not the walls are allowed to move transversally.) Also one-dimensional walls, as shown in
figure 1, often do not invoke plucking motion, because the adsorbed atoms may be dragged
along with one of the two moving walls, namely that which has the large surface corrugation.
This effect can also occur in two dimensions, but only if the lubricant particles interact
distinctly stronger with one wall than with the other wall [14]. If, however, pops do occur,
then the behavior is rather generic, i.e., linear in velocity vy with which the walls slide past
each other at very small vy, followed by a regime in which the dependence of Fj on vy is
only logarithmic. At very large vy, the friction force reaches the same value as that at zero
temperature [13].

It is worth noting that a logarithmic velocity dependence of F}, on v is not only obtained
with only a few impurities keeping the two opposing surfaces from getting into contact.
Similar behavior, in particular the logarithmic velocity corrections, was also observed in
large-scale molecular dynamics simulation by He and Robbins [15]. While often observed
experimentally, logarithmic velocity correction to F} are nevertheless by no means universal.
For instance, the Prandtl model - as well as the dry friction between an atomic force micro-
scope tip and a substrate - show corrections in the order of (Inv)?/? in the intermediate or
activated velocity regime [16,17].

The reason why the friction-velocity relationship becomes linear at extremely small ve-
locities is due to the fact that the number of instabilities invoked through sliding is less than
the number of pops that occur via equilibrium thermal fluctuations. Thus, sliding-induced
plucking motion is only a small perturbation to the overall dynamics. As v, is increased,
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Figure 4. Logarithm of the (in-plane) velocity distribution P(v) of boundary lubricant atoms
at various temperatures T and relative sliding velocity vy of the confining walls. The Mazwell
Boltzmann distribution Pypg ot the smallest temperature is inserted for comparison. The non-
equilibrium tails decay exponentially. The slope of the tails in the logarithmic representation is
independent of both vy and T. From reference [12]

the sliding-induced pops become much more numerous than those in thermal equilibrium.
Thermal fluctuations help atoms to leave energetically unfavourable positions, thus enabling
the atoms to jump prematurely before the true instability point is reached. At large vy,
temperature becomes irrelevant and Fj, saturates, because the number of instabilities and
the energy released only depends on the slid distance. At very large vy, dynamical resonance
effects are starting to set in, because vy divided by a characteristic distance (i.e. the lattice
constant) becomes comparable to intrinsic time scales in the system.

Velocity distributions

The jumps discussed in the last section will alter the atomistic velocity distribution P(v)
of the adsorbed atoms. Each time, an instability of a certain type occurs, there will be a
characteristic deviation AP(v) of P(v) from the Maxwell-Boltzmann equilibrium distribution
Pyg(v). During a jump, the plucking motion and its associated non-equilibrium velocity
distribution will neither be sensitive to the temperature nor to the sliding velocities of the
confining walls. The reason is that the duration of a pop is much shorter than both the
time for the system to reach local thermodynamic equilibrium and the time for the walls to
move by one lattice constant. Hence, the faster the walls slide past each other, the larger the
deviation between P(v) and Pey(v), and we would expect AP(v) to be proportional to .
Moreover, one should not expect a significant temperature dependence in the tails of AP(v).
These simple expectations can be confirmed by computer simulations, as shown in figure [4],
which shows that the non-equilibrium tails of P(v) are proportional in height with v, and
relatively independent of temperature. Given the shape of P(v) in figure 4, it is obvious
that it would not be possible to reproduce that distribution in terms of a single effective



temperature, but if anything, as a distribution of temperatures.

What can we learn from the velocity distributions shown in figure 47 First, the excess
kinetic energy will be dissipated into the walls as heat. In steady state, conservation of energy
requires that the heat flow per time unit must correspond to the external power necessary
to maintain motion. It is therefore possible to relate AP(v) and the related excess kinetic
energy to the friction force, as done quantitatively in reference [12]. Second, one can learn
that even though the net kinetic energy is barely increased with respect to the equilibrium
kinetic energy at, let’s say T = 102 and vy = 1073, the probability to have exceedingly
fast particles of velocities of let’s say v > 3, is increased dramatically. This indicates that
rare events are favoured considerably in non-equilibrium with respect to equilibrium, even
when both have the same fixed kinetic energy. In our case, it is possible to describe the non-
equilibrium distribution with two parameters in addition to the equilibrium parameters. The
additional parameters are the slope of the exponential tails and the prefactor or alternatively
slope of the tails and the area below them.

The slope B of the exponential tails such as those shown in figure 4 was found to be
dependent on the normal pressure p;. For our extreme BLs (from the impurity limit to
up to two layers of lubricant confined between the surfaces), a power law B o pJ* was
identified, although the exponent 0.4 is not expected to be universal. In particular, when
the number of layers between the walls is increased very strongly, the tails in P(v) seem to
disappear altogether, perhaps due to more collective motion [18]. Nevertheless, in the case
of extreme boundary lubrication, when everything is squeezed out but the last one or two
layers, one can see the trend that higher loads lead to more extreme velocity distributions.
One may speculate that this effect is relevant to tribochemistry, because extreme velocities
favor chemical reactions.

KINETIC FRICTION BETWEEN POLYMER BRUSHES

In the previous part of this chapter, it was discussed how sliding makes a boundary lu-
bricant deviate from thermal equilibrium and how this leads to dissipation. Now, we will be
concerned with the effects of leaving not only thermal equilibrium but also uniform sliding.
As mentioned in the introduction, Granick, Cai and coworkers [8,9] found enhanced dissi-
pation when they employed oscillatory shear between polymer brushes. In linear response,
such increased losses can be related to an (approximate) coincidence of relaxation times and
inverse driving frequencies [10]. However, at the given driving amplitudes, the brushes must
have already been far removed from linear response, so that this explanation does not seem
apply to the mentioned experiments. Zaloj et al. suggested an alternative mechanism for
the occurrence of enhanced dissipation [11]. Taking into consideration the elastic coupling
of the driving device to an embedded (frictional) system, they showed that stick-slip motion
can occur at intermediate driving amplitudes A, which would then explain the observed
enhanced dissipation. Both, at small A and at large A, friction would be smaller, because
the embedded particle’s motion is smooth in either limit. Zaloj et al. supported their claim
by studying a simple linear molecule, embedded between two shearing plates. While this
scenario for increased loss is certainly legitimate, it is not necessarily the relevant mechanism
for the system of interest and a more accurate model is needed to clarify the mechanism.
One may argue in support of Zaloj et al.’s scenario that computer simulations indicated a
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Figure 5. Time evolution of two randomly picked chains; the polymer represented with open
symbols is attached to the upper wall, the other one to the lower wall. On the left-hand side, the
brushes are shown in their uniform sliding state, at time t = 0, just before the sliding direction
is inverted. . and the arrow above denote a characteristic length of the polymer in steady-state
sliding. After reference [20)].

decreasing shear force with increasing shear rate [19]. Nevertheless, the bead-spring poly-
mers do not show stick-slip motion, even at weak coupling and small v,. Therefore it seems
that this explanation does not seem to explain the enhanced friction either.

Another reason might be more convincing: When the sliding direction is returned, the
interdigitation of the polymers will be much larger than during steady-state sliding. Thus,
energetically unfavorable configurations are produced and the relatex excess energy will be
lost as heat. Indeed, this is what one can see from snapshots of computer simulation as
shown in figure 5. The simulation underlying figure 5 will be discussed in the following [20].

Model and normal forces

Over the last decade, many computer simulations of polymer bearing surfaces have em-
ploied a simple bead spring model [19-22]. Using simple but generic models makes it possi-
ble to access much longer chains and timescales than it would be with chemically accurate
potentials. This makes it possible to study the universal behavior of polymers. The main in-
gredient of the present model is that the interaction between non-bonded segments is purely
repulsive, thus mimicking good solvent conditions. Furthermore, neighbored segments on a
chain are sufficiently close so that bond crossing does not occur. More details on the model
potential are given in references [19] and [22].

All simulations discussed here, have been carried out in the semi-dilute regime, which
is characterized by a grafting or anchoring density 1 > ag > ap =1 /Wngr, where o
denotes the critical grafting density and Ry, the radius of gyration of an untethered single
chain. At of, chains are starting to overlap which leads to stretching of the polymers
perpendicular to the walls. Although our model does not capture any chemical details and
even though our polymers are much shorter than those studies in many experiments, it is
possible to reproduce semi-quantitatively characteristic experimental features. For example,
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Figure 6. Normal stress on as a function of an effective density Nog/D between the two confining
walls for different degrees of polymerization N and grafting densities ag. The arrow encompasses
the regime of the shear simulations presented below. The dashed line reflects a power law D™*2,
where D is the separation between the walls. From reference [20].

it is possible to superimpose scaled force-distance curves rather accurately even when various
parameters are altered, such as the degree of polymerization or the ratio of grafting density
ag and critical graphting density . To be specific, we observe a power law dependence
ox o< D™*2 of the normal shear pressure oy as a function of the separation D. Comparison
with experimental data, such as that presented in Ref. [23], is difficult, because flat confining
surfaces were used in the simulations, while crossed curved surfaces with grafted polymers
were emploied in the experiments.

Steady-state sliding

When two polymer brushes are sheared against each other at constant sliding velocity, the
mutual interdigitation decreases with increasing sliding velocity vy, even though the brush
height remains almost unaltered [19]. The reduction of the brush overlap with increasing
shear rate leads to a logarithmic reduction in the friction force Fj for simple bead spring
models [21]. It was argued, however, that the friction-velocity relationship would also contain
positive In vy corrections to Fy, if energetic processes and instabilities (plucking motion) were
starting to play a role. These are absent in the purely entropic bead-spring polymers. Indeed,
experiments indicate that F}, is essentially independent of vy or perhaps has small net positive
corrections which are logarithmic in v, [24].

The purely entropic brushes shows some more interesting behaviour: Fj and the overlap
between the brushes is highly correlated, i.e., at fixed reduced grafting density ay/ a, all
measured curves, Fj as a function of the overlap, superimpose, even when the degree of
polymerization N, the sliding velocity vy, and the thermostat (reflecting the viscosity of the
solvent) are changed [20]. Given the brush overlap, one might have expected higher drag
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Figure 7. Left: Direct and indirect evaluation of the characteristic lateral length I, as a function
of sliding wvelocity vy. Te denotes the time necessary for the polymer brushes to pass through a 90°
configuration after the sliding direction has been returned. Right: Shear stress op. mormalized by
steady-state shear stress oty as a function of time in units of 76. Adapted after reference [20)].

between the brushes at higher velocities. However, the better shear alignment at higher vg
reduces the friction and compensates the velocity effect. A measure for the shear alignment
is the characteristic lateral length /., which is introduced in figure 6. It was found that it
depends like a power law . o< 19 on the sliding velocity.

Non-uniform sliding

The most simple non-uniform sliding mode, accessible to simulations, is to set the sliding
velocity suddenly to zero. The opposite protocol, namely to abruptly increase the sliding
velocity from zero to finite vy cannot be done as easily in a meaningful manner, because
the system at rest needs too much time to equilibrate. The ’slide and stop’ protocol was
investigated in detail in Ref. [21]. It was found that the shear stress relaxes much more
quickly than the structure. One should thus be careful when drawing conclusions on the
rheology of polymer brushes, when only tribological data is available. The relaxation of
the end-to-end radius of the polymers was found to be logarithmic in time, which perhaps
explains the logarithmic dependence of Fj on velocity. It was also observed that the brush
height remained essentially constant during the relaxation.

Non-uniform sliding that can best be described as ’slide-stop-return’ was analysed in
Ref. [20] and new qualitative behaviour was observed. In particular, the polymers were
found to swell, as can be seen in figure 6. The swelling is most pronounced after the relative
motion of the two surfaces is twice the characteristic length /., which was defined for steady-
state flow. Also the shear stress, evaluated directly between the brushes, is maximum after
the two surfaces have slid approximately twice the distance /., which can be seen on the
right-hand side of figure 7. On the left-hand side of figure 7, the direct measurement of /. in
steady state flow is compared to the indirect estimate, which is the length necessary to slide



the upper wall so long that the inclination of the polymer is 90° on average.

These results allow a new interpretation of the shear stress maxima of polymer brushes
under oscillatory shear that were mentioned in the introduction. At very small amplitudes
A and fixed driving frequency €2, the system will be in linear response and thus dissipation
is small. At very large A, the brushes will be in smooth sliding most of the time, because
brush swelling and interdigitation is only significant during a small initial fraction after the
sliding direction was reversed. If, however, A and €2 are chosen such that the exploration of
the shear stress maxima shown in figure 7 is a significant fraction per cycle, then dissipation
will be large. This enhanced friction can neither be explained with stick-slip motion nor with
a coincidence of intrinsic relaxation times and driving frequency, because the configurations
responsible for the large friction occur neither in thermal equilibrium nor in uni-directional
sliding. From the steady-state law I. oc v33 predictions can be made how the ’optimum’
frequency ¢ scales with the driving amplitude A, i.e., by replacing vy with [ .o, times
some geometric factor. Equating [, with A, one would obtain A%7 Qgg’t. It would be
interesting to see an experimental test of this prediction. Of course, one may not expect the
exponent to be exact, but seeing a powerlaw relationship A oc Q3 with an exponent v close
to 3/7 could certainly be considered strong support for the suggested picture.

CONCLUSIONS

We discussed two tribological systems, a simple boundary lubricant (BL) confined be-
tween two surfaces that move at a constant relative velocity, and two polymer brushes that
rub against each other in good solvent conditions under non-uniform sliding. Due to the
externally imposed motion, the BL is constantly pushed away from thermal equilibrium and
the energy released in the subsequent relaxation process gets lost as heat. At small sliding
velocities when the system is still close to thermal equilibrium, the lost energy is proportional
to the velocity. At large sliding velocity, however, the number of sliding induced instabili-
ties or * micro pops’ is proportional to the distance slid, so that the friction force becomes
insensitive to the sliding velocity. The distribution of velocities P(v) in the high-velocity
regime is different from the Maxwell Boltzmann distribution, i.e., there are tails that decay
only exponentially with v rather than exponentially with v2. One can speculate that effects
of this kind play a role in tribochemistry.

Imposing non-uniform sliding conditions in complex systems, such as the above-mentioned
polymer brushes, leads to additional losses. In particular, when the sliding direction gets
suddenly inverted, the brushes deeply penetrate into each other. This produces energetically
unfavorable micro-configurations and ultimately leads to even larger losses than those that
occur under uni-directional sliding. One may speculate that this is a generic feature of non-
uniform sliding.
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