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The fundamental features of friction between two polymer-bearing surfaces in relative sliding motion
are investigated by molecular dynamics simulation. Adsorbed and grafted polymers are considered in good
and bad solutions. The solvent is not treated explicitly but indirectly in terms of a Langevin thermostat.
In both systems, we observe shear thinning that is attributed to an orientation of the radius of gyration
along the sliding direction. This effect is particularly strong for surfaces bearing polymer brushes. In this
case, the shear stresses are mainly determined by the degree of the interpenetration of brushes.

I. Introduction

Polymers grafted to or adsorbed on surfaces modify
friction forces between these surfaces and thus have
important applications as lubricants. Therefore, the
investigation of these friction forces between polymer-
bearing surfaces has found great attention both experi-
mentally (see e.g. refs 1-12) and via computer simula-
tion (see e.g. refs 13-24). Further motivation to study
such systems stems from applications such as adhesion,
flow of polymer solutions, and melts through thin extrud-

ers and related problems of polymer processing, hydro-
dynamics of colloids stabilized with grafted polymer layers,
dynamics of wetting and spreading phenomena, flotation
of minerals and oil recovery, and so forth. In the present
study, we focus on the aspects important for nanotribol-
ogy25 and are particularly interested in contributing to
the understanding of the characteristics in the shear
behavior of surfaces with grafted polymers and of surfaces
with adsorbed polymers.3,4,7 In addition, we want to
elucidate the effect of solvent quality and thus present a
comparative study of several factors that control friction
mechanisms between polymer-bearing surfaces and try
to use these results for an improved understanding of the
pertinent experiments.

Computer simulations of this problem have the distinct
advantage that one can prepare absolutely well controlled
surfaces; we choose here a rigid perfect face-centered cubic
(fcc) crystal surface as substrate, and hence uncontrolled
effects such as mesoscopic substrate surface roughness,
adsorbed ions or other impurities attached to the surface,
and so forth are absent, and the interaction potential
between substrate atoms and the monomers of the polymer
chain can be chosen at will and is precisely known.
Furthermore, our polymer chains are strictly monodis-
perse. However, computer simulations also have clear
disadvantages: due to the complexity of the effective
potentials in a chemically realistic, fully atomic descrip-
tion, the accessible time scales would be far too short (on
the scale of nanoseconds) and also the length scales too
small (a few nanometers) to allow any meaningful
conclusion on the present problem, where the length scale
of interest is mesoscopic, and time scales of experimental
interest can be as large as seconds. Thus, coarse-grained
models of polymer chains need to be used, such as the
bead-spring model26 that was used in refs 13, 14, and 16
and is also used here, where each bead represents a group
of n ≈ 3-5 chemical monomers.27 Even on this coarse-
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grained level, one is still constrained to study scales of
length and time that are much smaller than those accessed
in experiment: Estimating the molecular dynamics time
unit roughly with τMD ≈ 10-11 s, the accessible time scales
are in the microsecond range, and thus we restrict our
attention to polymer chains that are much shorter than
the experimental ones, namely, N ) 30 effective monomers
per chain is used in the present work. Our polymers would
hence be nonentangled even under melt conditions, unlike
the situation encountered in experiments, and while the
release of entanglement constraints may be important in
the shear response of polymer brushes in the experiments,7
this relaxation mechanism is clearly not relevant for the
present simulations. A further characteristic difference
concerns the scales of length and density (Figure 1): the
density profile of uncompressed brushes shows density
oscillations (this layering phenomenon is a general feature
of fluids near hard walls28), and the range of oscillations
is only a factor of 2 (bad solvent conditions) to 5 (good
solvent conditions) smaller than the brush height. Cor-
responding experiments,1-12 however, deal with brush
heights which are at least an order of magnitude larger,
and then the layering or other local structure near the
grafting wall cannot even be resolved.10 Also, the con-
centration of monomers in the brush stays in the semi-
dilute regime29 in the experiments, while the simulation
(Figure 1) shows densities which correspond to rather
concentrated solutions. While in the experiment we thus
expect that hydrodynamic interactions play a role for the
relaxation mechanism, they are presently screened out
under the conditions of the simulations. Thus, we do not
even include the solvent molecules explicitly in our
simulations, since this saves about an order of magnitude
of computing time, and previous work has shown quali-
tatively similar results18,24 under conditions of such
concentrated polymer solutions.

While the simulations thus work in a regime of
parameters that complement the regime available to the
experiments rather than precisely matching it, the
simulations have the distinct advantage that we can
change the solvent quality at will, by suitable change of
effective interactions between the beads (Figure 1),
without any other change of the polymer model or the
grafting surface. Moreover, we can also use exactly the
same polymer model for the study of adsorbed rather than
grafted polymer layers, by simply removing the special
bonds between the chain ends and the wall. At the same
time, we allow for a weak attraction between the walls
and the polymers, while for grafted polymers it is essential
that the monomers along the backbone do not adsorb to
the substrate. Thus, we are able to perform a comparative
study of shear effects on grafted and adsorbed chains and
of good solvent versus bad solvent conditions. Despite the
large simulation activity,13-24 no such comparative study
has appeared as yet.

In section II, we describe the model in detail and recall
its static properties, while section III describes our results
for steady-state shear. Section IV presents a discussion
and comparison with the experiments, while section V
summarizes our conclusions and gives a brief outlook on
open problems.

II. Model
To study the fundamental features of friction between

two polymer-bearing surfaces in relative sliding motion,
a generic model of polymer chains is employed, which has
already been used in previous molecular dynamics simu-
lations for similar purposes.13,18,24 The two walls confining
the system consist of parallel [111] planes of an fcc solid.
Periodic boundary conditions are imposed in the plane of
the walls. The volume region between the walls contains
simple bead-spring chains of polymerization N. All
particles interact via Lennard-Jones (LJ) potentials

rij is the distance between particles i and j, and rc ij denotes
the cutoff radius or range of interaction. Note that the
choice rc ij ) 21/6σij corresponds to a purely repulsive
interaction between the particles. All parameters εij and
σij are set to unity, including the mass m of individual
monomers, unless mentioned otherwise. The units of
energy and length scale will be denoted with ε and σ,
respectively.

Only atoms within one wall do not interact via LJ
potentials. Instead, they are confined to their ideal lattice
sites, which are defined relative to the center of mass of
the top wall or the bottom wall. The lattice spacing chosen
for the confining walls is 1.2σ. The resulting separation
of the wall atoms might be considered unrealistically large
owing to the large number of atoms in one Kuhn segment
even if one keeps in mind the small binding lengths of the
C-C bond and the zigzag path along the polymer’s
backbone. However, one has to remember also that the
corrugation of a Kuhn segment is artificially reduced in
a coarse-grained model. This leads to distinctly reduced
friction (sticking condition) with the wall, in particular in
the case of adsorbed monomers. To compensate for this
effect in a simple way, we have followed the popular choice
for the lattice spacing in the confining walls.

In most of our studies, the top wall is driven externally
by imposing a constant velocity, while the bottom wall is
always kept fixed. Adjacent monomers in a chain inter-
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(28) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.;
Academic: London, 1991.

(29) de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell
University: Ithaca, NY, 1979.

Figure 1. Density profile of uncompressed brushes in the
default model (N ) 30, Rg ) 0.16/b2, T ) 0.5ε/kB). Inset: Effective
potential between two unbounded monomers as a function of
the solvent quality. The arrows indicate the position where the
potentials are cut off.

VLJ(rij) ) 4εij [(σij

rij
)12

- (σij

rij
)6

- ( σij

rc ij
)12

+ ( σij

rc ij
)6] (1)

Drag Mechanisms between Polymer-Bearing Surfaces Langmuir, Vol. 17, No. 25, 2001 7805



act with a finitely extensible nonlinear elastic (FENE)
potential that acts in addition to LJ potentials:

where k ) 30ε/σ2 and R0 ) 1.5σ. This model, which is
widely used in polymer simulations, prevents bond
crossing and yields the characteristics of the dynamics of
polymer melts.14,26 The bond length b is defined by the
position of the minimum in VFENE(r) + VLJ(r). For the
present choice of parameters, b ) 0.9945σ. In the following,
b will be used frequently to express length scales in order
to minimize confusion of the Lennard-Jones σ with the
shear stress σs.

The focus of this paper is the investigation of the friction
mechanism between two sliding polymer brushes in a good
solvent. However, bad solvents and adsorbed polymers
will be considered as well for comparison. In many
simulations of polymers in solution, the solvent is not
taken into account explicitly. Instead, the quality of the
solvent enters implicitly via the temperature: At large
temperatures, the radius of gyration Rg of a chain in dilute
solution scales such as Rg ∝ Nν with ν ≈ 0.59, which
corresponds to the behavior in a good solvent. At low
temperatures, one finds Rg ∝ N1/3, which corresponds to
the bad solvent case.30

In our simulations, we follow an alternative route to
mimic good and bad solvent conditions, because a change
of temperature would invoke a change of the gas pressure
and thus induce a change in the effective normal load. To
keep that pressure constant, all simulations are done at
one fixed temperature, namely, T ) 0.5ε/kB. To mimic
solvent quality, we perform the simulations with two
choices of the potential, or to be more precise, with two
different values for the cutoff radius rc of the LJ potential
[see eq 1]: (i) rc ) 21/6σ. This corresponds to the so-called
athermal case in which monomers only repel leading to
the scaling of Rg akin to that of the good solvent condition.16

(ii) rc ) 2(21/6σ). This choice will lead to the scaling Rg ∝
N1/3, which is reminiscent of the bad solvent case.30 Figure
1 and Figure 2 might further elucidate the role of the
choice for rc. Note that our temperature of T ) 0.5ε/kB is
well below the system’s θ-temperature of Tθ ) 0.7ε/kB for
the latter choice of rc.

Temperature is imposed by a Langevin thermostat. A
velocity-dependent friction term and random forces Γi(t)
are added to the equations of motion such that

where V is the total potential and γ is a viscous damping
constant that couples the monomers to a heat bath. Hence,
γ plays the role of a viscous monomer-solvent friction.
Γi(t) is a white noise satisfying the fluctuation dissipation
theorem:

The damping term and the random forces are believed to
mimic collisions of monomers with solvent atoms. We will
not account for the flow of the solvent into the lower brush.
This approximation should be reasonable for very con-
centrated solutions, where hydrodynamic interactions

between the monomers are screened out; see, for example,
Figure 2a in ref 22. Instead, the solvent is supposed to be
always immobile with respect to the lower surface. Thus,
only the top surface is in motion with respect to the solvent.
This was meant to mimic the effect of dragging the tip
(upper surface) through the solvent. An explicit simulation
of the solvent atoms would make the present study
computationally unfeasible. Moreover, a realistic flow
profile of solvent atoms between two polymer-bearing
surfaces in relative sliding motion is not yet known, albeit
recently proposed simulation techniques31,32 suggest prom-
ising ways to overcome this shortcoming in a reasonably
well controlled way. Note that it is possible to calculate
not only the net shear stress on the driven upper wall but
also the direct (friction) forces between brushes belonging
to the top wall and brushes belonging to the bottom wall.
These direct forces do of course depend only very little on
the assumptions of the solvent’s velocity profile. In our
treatment, we certainly overestimate the flow into the
upper brush. The main effect is the slightly asymmetric
velocity profiles that become apparent in Figure 7 and
Figure 11. However, additional simulations were per-
formed with a thermostat where γ was set to zero parallel
to the shear direction. None of our conclusions on the direct
brush brush interactions have to be altered with such a
thermostat.

Tethering a polymer to a wall is realized by choosing
εhw ) 100ε and rc ) 2(21/6σ) between its headgroup and
wall atoms. Simultaneously, the mass of the headgroup
is increased by a similar factor in order to prevent the
system from performing fast oscillations, which would
require undesired small time steps ∆t. We use here a
predictor-corrector algorithm to fifth order and a time

step of ∆t ) 0.005xmσ2/ε. All other monomers of a grafted
chain interact with the wall with εmw ) 1ε and a short-
range cutoff rc mw ) 21/6σ. This means that the wall-
monomer interaction is purely repulsive. In the case of
adsorbed polymers, all monomers are assumed to interact
with the wall atoms with εmw ) 1ε and rc mw ) 2(21/6σ),
independent of the solvent’s quality. Grafting densities
arechosentobe identical onbothsurfaces.The interactions
between monomers are shown in the inset of Figure 1 as
a function of the solvent quality.(30) The relation Rg ∝ N1/3 has been confirmed for simulations of

isolated collapsed chains but is difficult to confirm experimentally,
because extremely dilute solutions are necessary to avoid aggregation
of the collapsed chains and ultimately polymer-solvent phase separa-
tion.

(31) Warren, P. B. Curr. Opin. Colloid Interface Sci. 1998, 3, 620.
(32) Jendrejack, R. M.; Graham, M. D.; de Pablo, J. J. J. Chem. Phys.

2000, 113, 2894.
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Figure 2. Normal force between polymer-bearing surfaces as
a function of surface separation.
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In our simulations, the number of atoms per confining
wall is Nw ) 400. Note that each wall consists of one layer
only. Thus, the net number of wall atoms in the two
confining walls (layers) is 2Nw ) 800. Our default system
furthermore contains 67 polymers with polymerization N
) 30 grafted to each wall, resulting in a grafting density
of Rg ) 0.16b-2. In simulations of adsorbed polymers, the
same total number of polymers is used as in the default
system.

All simulations presented in this study for polymer
brushes have been carried out in the semidilute regime,
which is characterized by a grafting or anchoring density
1 . Rg . Rg

/ Z 1/πRgyr
2, where Rg

/ denotes the critical
grafting density and Rgyr is the radius of gyration of an
untethered single chain. The default choice of the actually
used grafting density of Rg ) 0.16b-2 (b being the bond
length introduced above) satisfies these inequalities
sufficiently well for our choice of N ) 30 (Rgyr ≈ xN/6 b
for Gaussian chains) and lies well above the critical
grafting density of Rg

/ ≈ 0.06b-2. Despite the small degree
of polymerization employed in this study, the monomer
density of nonoverlapping brushes exhibits the correct
characteristics as shown in Figure 1. Similar density
profiles for brushes in both good and bad solvent have
been reported in experimental10,33 and computational13,16,34

studies. We want to note that the plateau in the polymer
density in the case of a bad solvent is about 60% of that
of a perfectly ordered fcc or hcp (hexagonal close-packed)
crystal consisting of nonbonded LJ monomers at the same
temperature. The plateau density in the good solvent is
25% of the crystalline reference density. Note that in the
experimental brush systems the mean volume fraction of
monomers in the unperturbed brush is only ca. 4%. Near
the walls, layering effects are observed. These are reflected
by density oscillations with adjacent maxima being
separated by a distance close to the intramolecular bond
length.

The monomer profiles deform considerably in the case
of overlapping brushes. Layering is enhanced by decreas-
ing the distance between the surfaces and by decreasing
the quality of the solvent. Layering is similar for grafted
and adsorbed polymers. The normal forces needed to
compress the system are shown in Figure 2. In a good
solvent, there are only marginal differences between
adsorbed and grafted polymers; however, in the case of a
bad solvent significant differences are found. As suggested
previously,35 the attraction between the two surfaces in
a bad solvent takes place at considerably larger separation
for grafted than for adsorbed polymers.

In this study, we focus on systems that do not exhibit
static friction, that is, on brushes that are not too strongly
compressed. A simple way to determine whether the
system exhibits static friction is to study its free diffusion:
36 A finite system that shows static friction will not diffuse
if it is subject to a thermal, fluctuating force like the one
defined in eq 3. Instead, it will oscillate around a more or
less well-defined equilibrium position. A “viscous” system
of finite size as opposed to a solidified system, however,
will not appear to be pinned and quickly cross over from
the ballistic regime to the diffusive regime; that is, the
top wall with the attached brush diffuses as a whole
relative to the fixed bottom wall (of course, the diffu-

sion constant for this motion scales inversely in the area
of the wall). For wall separations of less than 20b, only
the good solvent case is found to be viscous. As the
wall separation decreases to distances of about 14b, also
the good solvent case appears to be pinned. Of course,
also “nonviscous” systems become unpinned when the
relative velocities of the walls are constrained to non-
zero values.

III. Results

In this section, the results for a system under steady
shear are presented. The upper wall is moved at a constant
velocity v ) (v, 0, 0) while keeping the distance D between
the walls constant. We concentrate on the regime 15b j
D j 20b, where layering does not (yet) occur near the
center of the system. In this regime, the brushes are
already significantly compressed with respect to noncon-
tacting surfaces, however, the monomer density is still
well below that of an fcc crystal; see Figure 1.

Due to the large dimensionality of our model’s param-
eter space, we mainly confine ourselves to consider the
default system (N ) 30, D ) 17.5, γ ) 2, Rg ) 0.16, grafted,
good solvent) and compare it to models where typically
not more than four of the above-mentioned parameters
are varied simultaneously with respect to the default
system. In all our simulations, we keep the surface
separation D fixed. This often leads to artifacts since a
constant normal load is a more natural choice. In our case,
however, this is not an issue, because at a given sliding
velocity, fluctuations of the calculated instantaneous
normal stress on the surface (due to monomer wall
interactions) are always small compared to the average
normal pressure. This means that for steady-state sliding
the ensembles D ) const and σN ) const are equivalent.
However, there is a small decrease in σN at fixed D with
large sliding velocities as can be evidenced from Figure
12. Note that the situation would be dramatically different
for brushes under oscillatory shear. In this case, normal
forces depend sensitively on the applied frequency for a
given surface separation22 and hence the equivalence
between constant load and constant separation breaks
down.

Usually, each model, as defined by its parameters, is
investigated for sliding velocities 0.01 e v e 0.35. v is
given in LJ units [xε/m]. LJ units that would be repre-
sentative of hydrocarbons are26 ε ∼ 30 meV ≈ 400 kBK, σ
∼ 0.5 nm, and LJ time unit t0 ∼ 3 ps. At this point, we
have to stress that these are very rough estimates that
may depend sensitively on temperature, stiffness of the
chain, and other details.37 One should also interpret t0 not
as a relaxation time of a polymer but merely as a rough
estimate of short-scale motion. Relaxation times of the
chains are orders of magnitudes larger than t0, that is, by
at least a factor of the squared degree of polymerization
in the unentangled regime.38

Note that the large gap between high relative sliding
velocities in the simulations and slow velocities in the
experiments is partially bridged by the fact that the
relevant time scales (relaxation times of polymers) are
significantly larger in the experiments than in the
simulations. The discrepancy in time scales is due to the
larger degree of polymerization in the experiments as
compared to the simulations.(33) Tounton, H. J.; Toprakcioglu, C.; Fetters, L. J.; Klein, J. Nature

(London) 1988, 332, 712.
(34) Wittmer, J.; Johner, A.; Joanny, J. F.; Binder, K. J. Chem. Phys.

1994, 101, 4379.
(35) Klein, J. Pure Appl. Chem. 1992, 64, 1577.
(36) Müser, M. H.; Robbins, M. O. Phys. Rev. B 2000, 61, 2335.

(37) Baschnagel, J., et al. Adv. Polym. Sci. 2000, 152, 41.
(38) Binder, K.; Lai, P.-Y.; Wittmer, J. Faraday Discuss. 1994, 98,

97.
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The quantity of interest is the shear stress σs or the
effective viscosity ηeff which are related via39

The shear stress is calculated by adding all forces from
the monomers acting on the wall and dividing the result
by the area of the wall. We do not intend to anticipate that
the shear force gradient is uniform across the gap of width
D and that ηeff corresponds to a real fluid viscosity. Such
an interpretation would be meaningless in the case of
shear forces between brushes. At this point, ηeff is only
introduced in order to represent the drag forces in such
a way that the trends for both the low-velocity regime and
the high-velocity regime are represented within one plot.
Some representative results for ηeff are shown in Figure
3. Our results are in good qualitative agreement with refs
13 and 16, where the shear stress is shown as a function
of the shear rate. We have chosen ηeff as the ordinate
because this shows more clearly the deviation of the shear
forces from linear response which is obtained in the limit
v f 0. A precise determination of the visco(elastic) response
in that limit is difficult, because the simulations with small
v are very CPU time expensive. Moreover, the application
of the fluctuation-dissipation theorem from the equilib-
rium behavior at v ) 0 is not trivial either, owing to the
large relaxation times of the polymers. A quantitative
comparison of our data with those in refs 13 and 16 is not
possible, because not all the relevant parameters are
known to us. The main trend, namely, shear thinning
with increasing sliding velocity, is the same and even a
bump similar to the one shown in Figure 3 for the grafted,
good solvent case (e.g., D ) 17.5 b, γ ) 2) could be found
in the data of ref 16. This could be seen after scanning in
the data from refs 13 and 16 and plotting it in the way
in which we present the data here. For large velocities
and grafted chains, the effective viscosity (or the shear
stress) is dominated by the interactions of the brushes
with the solvent. This is due to the fact that half of all
polymers, namely, those grafted to the top wall, are
dragged with the average velocity v through the solvent

while the other half has velocity zero since the solvent is
immobilized with respect to the lower surface and the
lower brush. Thus, the mean monomer velocity is half of
the upper wall’s velocity, 〈vm〉 ) v/2. The velocity profile
is different from that of adsorbed polymers, which have
a different nonlinear velocity profile leading to 〈vm〉 e v/2.
Since polymer chains are not permanently fixed at the
top wall, monomers adsorbed at the top wall may get
detached and readsorbed at other surface sites later, so
that the average velocity of the chains adsorbed to the top
wall is less than the wall velocity itself.

For both adsorbed and grafted polymers, we find shear
thinning; for example, ηeff decreases with increasing shear
rate, which agrees with previous simulations on hexamers
between weakly adsorbing surfaces40 and simulations18

and experiments7 of polymer brushes between surfaces.
To deepen our understanding of the shear stress between
polymer-bearing surfaces, we will study the effect of
various parameters on the effective viscosity. Adsorbed
and grafted polymers will be treated separately.

A. Adsorbed Polymers. Before discussing the results
for adsorbed polymers under shear, we will briefly discuss
the Navier-Stokes equation for our system. To do this,
we assume a constant viscosity of the polymers ηbulk
throughout the film, which is supposed to be identical
with the bulk’s viscosity at small sliding velocities. If we
keep in mind the friction term in eq 3 describing the
coupling of the monomers with the thermostat, the
Navier-Stokes equation reads

where F is the mass density of the monomers, which is
approximately constant throughout the film not too close
to the walls, and vm(z) is the monomer velocity profile.
With the boundary conditions vm x(0) ) 0 and vm x(D) )
v0 e v, the velocity profile is

The main part of the shear stress σs can be obtained by
integration over the dissipated force, namely, the right-
hand side of eq 6, resulting in

In the limit of large wall separation D . xηbulk /γF, this
can be approximated to

Note that the ratio v0/v depends on the stick condition of
the adsorbed monomers. At large wall velocity v and large
damping γ, one can expect less stick than at small v and
small γ, respectively. Of course, the treatment in eqs 6-9
is a quasi-macroscopic one; strictly speaking, it is ap-
propriate only for length scales that are large in com-
parison to the length scale over which the layering of the
density occurs (Figure 1).

(39) Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics;
Prentice Hall: Englewood Cliffs, NJ, 1965.

(40) Manias, E.; Bitsanis, I.; Hadziioannou, G.; ten Brinke, G.
Europhys. Lett. 1996, 33, 371.

Figure 3. Effective viscosity ηeff for adsorbed and grafted
polymers in good and bad solutions of varying viscosity as a
function velocity v. The solid line represents the response of an
uncompressed brush that is dragged through the solvent with
γ ) 2.
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Some results for the velocity profile of monomers
belonging to adsorbed chains are shown in Figure 4. The
simple Navier-Stokes equation describes the velocity
profile well for small wall velocities v and small coupling
to the solvent γ. However, the normalized curves for γ )
0.5 do not collapse for the two velocities v ) 0.03 and v
) 0.25. As we will discuss later, the large velocity gradient
near the upper wall in the v ) 0.25 simulation stretches
the polymers along the flow direction. This presumably
results in the strongly reduced effective shear viscosity
ηeff which we have used as a fit parameter in Figure 4. The
two curves for v ) 0.03 on the other hand can be described
with a similar value for ηeff. For v ) 0.03, the elongation
of the polymers parallel to the upper surface’s velocity is
much smaller than for v ) 0.25 (see Figure 10 below).

Of course, for large values of ∇v, deviations from the
simple Navier-Stokes equation (eq 6) have to be taken
into account in order to reflect strong deviations from
thermalequilibriumsuchas thestretchingof thepolymers.
For small sliding velocities, v < 0.03, ηeff is relatively
independent of γ as long as γ < 2, indicating that the
rheological response is still close to the linear response
regime in that case.

Figure 4 furthermore confirms the assumption of a mean
monomer velocity (much) smaller than v/2 for adsorbed
monomers. This explains why our net shear force as shown
in terms of an effective viscosity in Figure 3 is smaller for
adsorbed polymers than for grafted polymers, which is in
contrast to experiment.

For a given sliding velocity, the shear stress turns out
to depend linearly on the normal pressure σN as can be
seen in Figure 5. A linear change in σs with σN is well-
known for two solid bodies in relative motion,25 and there
are relatively simple quasi-geometrical explanations why
the static friction force between two (boundary lubricated)
solids shows this dependency.41 However, those geometric
arguments cannot be applied in a straightforward way to
the frictional drag forces investigated in this study.

A possible interpretation of the relation ∂σs/∂σN ≈ const
can be based on the following scaling argument: Both
theory and experiment42 suggest that in the moderately

strong compression regime the interaction energy per unit
area E(D) of interacting adsorbed layers in a good solvent
is E(D) ∝ D-1. Thus, the normal shear stress goes as σN
) -E(D)/D ∝ D-2. The effective viscosity in the overlap
region of extent δ, say, of the two interacting adsorbed
layers, goes as ηeff ∝ c ∝ D-1, on the assumption that the
polymers are unentangled, where c is the monomer
concentration in the gap and is assumed to be uniform
across the gap. If we assume that δ is more or less
independent of σN in the range of Figure 5, then substi-
tuting ηeff ∝ D-1 in eq 5 gives σs ∝ D-2, that is, a linear
increase of σs with σN as in Figure 5. This type of scaling
argument should work best for very long chains and
semidilute concentrations, conditions which apply to our
simulations at best approximately, however.

Also, the extrapolations of the σs(σN) curves show an
interesting proportionality with the velocity v of the upper
wall; see Figure 6. Remember that the bare data (at a
given nonzero normal load) show rather nonlinear be-
havior. Of course, at low load, D is large and hence ∇v is
relatively small. This favors the validity of the Navier-
Stokes equation and the proportionalities suggested in eq
9. Note that the stick condition v0 ) v, which allows
replacement of v0 with v in eq 9, is particularly well

(41) Müser, M. H.; Wenning, L.; Robbins, M. O. Phys. Rev. Lett. 2001,
86, 1295.

(42) Klein, J.; Luckham, P. Macromolecules 1984, 17, 1041.

Figure 4. Velocity profile of adsorbed chains in good solvent
for two shear velocities and solvent viscosities. The velocities
are normalized to the mean velocity of the outermost polymer
layer. The wall distance is D ) 17.5b. The lines represent fits
according to eq 7.

Figure 5. Net shear stress σs for adsorbed chains in good
solvent with γ ) 2 as a function of σN for various shear velocities
v and wall distances D. Solid lines are linear fits through the
data.

Figure 6. Extrapolation of σs from previous figure to zero
normal stress as a function of wall velocity v for various
couplings γ to solvent.
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satisfied at small loads. Of course, stick is also favored by
small values of γ and v.

B. Grafted Polymers. The net shear stress σs that is
measured in the simulations comes from the coupling of
the polymers which are grafted to the upper surface to
the thermostat which mimics the solvent plus a contribu-
tion σbr which comes from the direct brush-brush
interaction. This section focuses on the latter contribution
σbr. It is calculated by adding up all forces between
monomers “belonging” todifferent walls (via their chemical
bonds) and dividing the sum by the area of contact. A key
quantity to understand σbr certainly is the overlap of the
brushes from opposite sides of the interface. While it is
difficult to measure the overlap between the brushes
experimentally, this quantity is easily accessible in
computer simulations. In Figure 7, the folded density
profile is analyzed for our default model for different
velocities. The extent of contact between opposing brushes
decreases systematically with increasing velocity v. This
explains why the net brush-brush friction decreases with
increasing sliding velocity; see Figure 8 for some repre-
sentative graphs. The decrease of σbr with v shown in
Figure 8 for the good solvent case can be reasonably well
described with a logarithmic velocity dependence.

To analyze the dependence of σbr on the overlap, we
first show that the integral over the overlap is closely
related to the number of interactions that take place
between monomers belonging to the lower surface and
those belonging to the upper surface. The number of
interactions per unit area Nint/A can be estimated with

where the sums over monomers with index i and j only
include upper brush and lower brush monomers, respec-
tively. Assuming that the density profile only varies on
length scales that are large compared to the atomistic
dimension σ or b, the right-hand side of eq 10 can be written
as

within the mean-field assumption Fub(r) ≈ Fub(z). We have
explicitly checked the linearity between Nint/A and the
overlap integral Io for many different parameter sets. A
proportionality constant larger than but in the order of
unity was found. The proportionality constant does,
however, depend slightly on the grafting density and the
wall separation.

In Figure 9, the net brush-brush interactions σbr are
plotted versus the overlap integral Io for a large variety
of model parameters. It can be seen that the value of σbr
is mainly determined by the overlap Io.

Velocity effects seem to be implicitly included in Io, which
might appear counterintuitive at first sight. If two
configurations have the same amount of overlap but
different sliding velocities, we would expect the fast sliding
system to show larger friction than the slow sliding system.
However, we have to keep in mind that the velocity
gradient at the fast sliding interface is much larger than
at the slow sliding interface. From the simulations of
friction between surfaces bearing adsorbed polymers, we
have learned that the effective viscosity decreases with
increasing velocity gradient, because the polymers orient
along the sliding direction. For grafted polymers, this
orienting process is even enhanced due to the flow of the
solvent past the brushes; thus, the decrease in the effective

Figure 7. Folded density profile FubF1b of polymer brushes
in good solvent under different shear velocities (D ) 17.5b,
γ ) 2, N ) 30, Rg ) 0.16). Fub and F1b denote the density of
monomers belonging to the upper brush and lower brush,
respectively.

Figure 8. Direct brush-brush shear stress σbr as a function
of shear rate for different models.

Figure 9. Direct brush-brush shear stress σs for different
models at various sliding velocities as a function of the overlap
integral. Large velocities correspond to small direct brush-
brush interactions and vice versa.

Nint/A ∝
1

A
∑
i(ub)

∑
j(1b)

exp{-(ri - rj)
2/2σ2} (10)

Io ) (2πσ2)3/2∫ dz Fub(z) Flb(z) (11)
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viscosity is even stronger for brushes than for adsorbed
polymers. To summarize, the effect on friction due to an
increase in v at a given overlap of the brushes is
compensated by a decrease in the effective viscosity.

The effect of sliding velocity on the orientation of the
polymers can be seen in the tensor of gyration, which is
shown in Figure 10. The tensor of gyration gRâ is defined
as

As mentioned in the above paragraph, the orientation
effect of the polymers along the sliding direction is much
larger for grafted polymers than for adsorbed polymers.
It is instructive to represent the tilting effect of grafted
polymers by showing snapshots of the simulation. This is
done in Figure 11. One can clearly observe the tilting of
the polymers and a reduction of the interpenetration by
comparing the snapshot for different sliding velocities.
Tilting and subsequent reduction in the effective viscosity
were also observed for a strongly compressed brush that
moved laterally with respect to a flat confining wall in
good solvent conditions.22

Also for surfaces bearing polymer brushes a linear
relationship between the brush-brush shear stress σbr
and normal load per area σN is obtained within the regime
of loads investigated. The relevant data are shown in
Figure 12. From that figure, it is possible to extract
(differential) friction coefficients µ ) ∂σs/∂σN, which we
compare to those obtained from Figure 5. The results are
shown in Figure 13. For large velocities, µ decreases
significantly with v for grafted polymers, but it increases
and eventually levels at a value of about 0.15 for the
adsorbed polymers.

One could stress again scaling arguments for a possible
interpretation of σbr ∝ σN. The normal stress between
brushes in a good solvent goes as σN ∝ D-9/4, or for the
shorter brushes one may be closer to σN ∝ D-2 (see e.g. eq
14 in ref 10)). What is missing is how Io varies with σN.
If we assume the result [see e.g. eq 22b of ref 10] that
d (the extent of interpenetration which is roughly pro-
portional to δ) varies very weakly with D, as δ ∝ D-1/3,
then δ ∝ σN

1/6, that is, only a very weak variation. We

may also assume, as in the scaling argument above,
that for the brushes too ηeff ∝ c ∝ D-1. We also need
to augment eq 5 with the effect of increased interpene-
tration δ since σbr depends directly on this. This gives
σbr ∝ δηeff/D ∝ D-2σN

1/6 ∝ σN
57/54, which is to a good

approximation σbr ∝ σN and hence close to the results
shown in Figure 12. One has to keep in mind again that
this type of scaling argument should work best for very
long chains and semidilute concentrations. These condi-
tions apply to our simulations at best approximately,
however.

IV. Discussion and Comparison to Experiment

Focusing first on the behavior of sheared polymer
brushes in good solvent conditions under moderate
compression (e.g., D/b ) 17.5 in Figure 8, noting from
Figure 1 that the height of a single uncompressed brush
is about h/b ≈ 15 so that brushes first overlap at h ≈ 30
b), we see from a comparison of Figures 2 and 8 that the
shear stress typically is an order of magnitude smaller
than the normal force. Qualitatively, this is the same effect
as seen in the experiments;3,4,7 however, in the experiments
it was possible by increasing D somewhat to obtain shear
stresses that are many orders of magnitudes smaller than
the normal force. It is not possible to fully reproduce this
finding with our simulations for a variety of reasons: (i)
for larger D, the two brushes interact rather weakly with
each other, and then our neglect of taking the solvent
explicitly into account becomes more and more unrealistic;
(ii) measuring extremely weak shear forces in a simulation
that includes so few polymers in the system (our “default
system” has no more than 67 polymers grafted to each
wall), we would run into a problem of low statistics; (iii)
due to the shortness of our chains (N ) 30 effective
monomers per chain only), already the uncompressed
brushes are only weakly stretched, and hence we do not
have a wide range of D to our disposal. Choosing D too
small, one obtains a pronounced layered structure through-
out the polymer film all the way from one wall to the
other,21 and one rather encounters the situation of a dense
polymer melt or even a confined polymer glass. This
situation does not correspond to the experiment either.
Nevertheless, we can vary the degree of interdigitation of
the two polymer brushes by varying the shear rate (Figure
7), and we find that the shear stress varies approximately
linearly with the overlap integral that measures the
interdigitation of the two brushes (Figure 9). This result
confirms the interpretation that was proposed for the
experiments, and it agrees with the findings from various
simulations of somewhat different models.20,21

A result which so far lacks experimental check, however,
is the behavior of two interacting polymer brushes under
bad solvent conditions: for D/b ≈ 17.5, the shear stress
is now much larger than previously (Figure 8), although
the two brushes are only hardly compressed (Figure 1
shows that the height of a single uncompressed brush
under bad solvent conditions is about h/b ≈ 9), and one
is in a regime where the normal force is attractive rather
than repulsive (Figure 2). Presumably, this latter obser-
vation presents the clue for this surprising strength of
the shear forces: the monomers in the tails of the two
brush profiles stick to each other, and overcoming this
attraction needs a rather strong shear force.

This consideration already presents a distinct hint that
for an understanding of the shear properties of polymer-
bearing surfaces the solvent conditions are very important.
The simulations match up nicely with experiments of
adsorbed chains in poor and theta solvents at different

Figure 10. Diagonal elements of the tensor of gyration gRR for
adsorbed and grafted polymers as a function of shear rate in
good solvent (D ) 17.5b, γ ) 2). The quantities are normalized
by their equilibrium values at v ) 0.

gRâ ) 〈[∑
i

N

(RiR - 〈RR〉)][∑
i

N

(Riâ - 〈Râ〉)]〉 (12)
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shear velocities;4,11 see also Figure 10 in ref 7. Similarly,
the simulations roughly match experimental results for
grafted chains.12

V. Conclusions
We have used computer simulation methods to study

the frictional drag experienced by a surface bearing either
an adsorbed or a brushlike polymer layer as it slides past
a similarly covered surface. For both adsorbed and
brushlike layers, we have varied the normal pressure
between the surfaces (and thus the intersurface separa-
tion), the sliding velocity, and the solvent quality. For the
case of adsorbed polymers, our results reveal a rather
strong frictional drag in poor solvent conditions (probably
due to the monomer-monomer attractions), with a
significantly weaker shear force in good solvents. Both
results are qualitatively in agreement with experiments.

For the case of polymer brushes in good solvents, the most
commonly encountered case, we find a remarkable de-
crease in the frictional drag at higher shear velocities,
which is correlated with a corresponding decrease in the
extent of overlap and interaction between the opposing
brushes. This is due to stretching of the chains as a result
of the sliding velocity field and the consequent reduction
in the extent of their interaction in the overlap zone. These
results too are in qualitative agreement with recent
experiments.

Our results suggest several avenues for future simula-
tion work. These include the use of longer chains and
studying the effect of chain length and of grafting density
for the case of polymer brushes. In particular, this would
enable closer correspondence between the simulations and
the experiments than is possible at present. Considering
much longer chains and keeping the grafting density the

Figure 11. Snapshot of sliding walls bearing endgrafted polymers in good solvent. Polymers grafted to the upper wall are green,
and polymers grafted to the lower wall are blue. Periodic boundary conditions are employed. Top: Sliding velocity v ) 0.01. Bottom:
v ) 0.2.
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same as chosen here is technically very difficult for
simulations, however, since then entanglement effects
would come into play which lead to a dramatic enhance-
ment of the relaxation times of the grafted chains.
However, choosing much longer chains and reducing
the grafting density suitably would allow better study
of the regime of semidilute concentrations and provide
hence a more convincing test of some of the scaling
arguments discussed in our paper. Our first results,
described in this paper, give us confidence that new and

detailed insight into the mechanism of the frictional
drag between polymer-bearing surfaces may be obtained
from such studies.
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Figure 12. Brush-brush shear stress as a function of normal
pressure for different wall separations. Lines are linear fits
through the data.

Figure 13. Differential friction coefficient µ for adsorbed and
grafted polymers in good solvent as a function of velocity.

Drag Mechanisms between Polymer-Bearing Surfaces Langmuir, Vol. 17, No. 25, 2001 7813


