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M.H. Müser: Theory and Simulation of Friction and Lubrication, Lect. Notes Phys. 704,
65–104 (2006)
DOI 10.1007/3-540-35284-8 4 c© Springer-Verlag Berlin Heidelberg 2006



66 M.H. Müser
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Molecular dynamics (MD) and related simulation techniques have proven in-
dispensable in unraveling the microscopic origins of many tribological phe-
nomena such as friction, lubrication, and wear. This chapter is meant to serve
as a guide for conducting MD simulations to further deepen our understand-
ing of the processes that occur when two surfaces are in relative sliding mo-
tion. Some of the key mechanisms leading to friction will be discussed first.
Knowledge of these mechanisms is imperative to both set up and interpret the
results of simulations. However, the focus of this chapter will be on technical
aspects such as how to construct realistic surface profiles and how to impose
load, shear, and temperature during simulations. Finally, a few selected MD
studies will be presented.

1 Introduction

Atomistic simulations of friction between solids have received growing atten-
tion in the last decade. This increase of interest has been spurred by the
miniaturization of mechanical devices, the peculiar behaviour of condensed
matter at the nanoscale, and advances in simulating ever more accurately
chemically complex lubricants and surfaces [1–3]. Computer simulations have
contributed significantly to the identification of dissipation mechanisms and,
in some cases, have overthrown previously established explanations of the ori-
gin of friction. Despite impressive progress in the field, many open questions
of scientific and technological interest persist. To name a few, the microscopic
mechanisms leading to sliding-induced wear remain elusive, it is unclear how
the interactions between lubricant additives affect lubricant performance and
even the friction mechanisms in many relatively well-defined, nano-scale sys-
tems have not yet been convincingly identified. This chapter will address these
and related issues and point to some unsolved questions. However, the main
objective will be to provide guidelines as to how to conduct tribological sim-
ulations.1

Sliding surfaces are generally in a non-equilibrium state. One of the dif-
ficulties in simulating materials far away from equilibrium is the lack of a
general principle such as minimization of free energy. Along these lines, the
equivalence of ensembles in the thermodynamic limit does not apply to many
tribological systems. This can be illustrated as follows. In a first simulation of
two sliding surfaces, the kinetic friction force, Fk, is determined at constant
load and constant sliding velocity. If a consecutive simulation is run in which
similar parameters are employed except that now the separation is constrained
to d, then one may well obtain completely different values for Fk from the two
simulations. This example demonstrates that implementing boundary condi-
tions properly is crucial in non-equilibrium simulations if we want to make

1 Tribology is the science of surfaces in relative motion. It is sometimes also defined
as the science of friction, lubrication, and wear.
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reliable predictions. It also illustrates one of many pitfalls that can dimin-
ish considerably the value of a largely well-designed tribological simulation.
These pitfalls often result from convenience where the unrealistic treatment,
in this case constant separation, is easier to implement than the experimental
condition, such as constant normal load.

Another important trap to avoid is the use of any artificial symmetries
that do not exist in experiments. Unfortunately, it is almost common practice
to simulate two identical, perfectly aligned surfaces, which are termed com-
mensurate, although such interfaces are known to behave in a manner that
is qualitatively different than that observed when two dislike, or misoriented
surfaces, called incommensurate, rub against each other. Neglecting surface
curvature or not allowing lubricant to become squeezed out of the contact
can also lead to behaviour that would not be found in a regular laboratory
experiment. Additionally, temperature control may be a more sensitive issue
for systems far from equilibrium than in equilibrium simulations. By imposing
shear, we constantly pump energy into the system, which needs to be removed.
Thermostating naively may induce unrealistic velocity profiles in the sheared
lubricant or lead to other undesired artifacts.

Before discussing the technical aspects of atomistic friction simulations,
this chapter will give a small overview of the theoretical background of friction
at small velocities. Without such a background, it is difficult to ask meaningful
questions and to interpret the outcome of a simulation. After all, our goal goes
beyond simply reproducing experimental results. It is often helpful to classify
the processes into categories such as linear response, out-of-equilibrium steady
state, and strongly irreversible. Moreover, a good understanding of the the-
oretical background will aid in determining which aspects of the simulations
deserve particular focus and which details are essentially irrelevant. In some
situations, for example when simulating boundary lubricants exposed to large
pressures, the results are typically insensitive to the precise choice of the ther-
mostat, while the opposite holds if the two sliding surfaces are separated by
a high Reynold number fluid, or if polymers are grafted onto each surface.

In Sect. 2, some theoretical aspects of friction between solids will be ex-
plained. Section 3 contains an overview of algorithms that have been used in
the simulation of tribological phenomena, and some selected case studies will
be presented in Sect. 4.

2 Theoretical Background

Every-day experience tells us that a finite threshold force, namely the static
friction force, Fs, has to be overcome whenever we want to initiate lateral
motion of one solid body relative to another. Conversely, when attempting to
drag a solid through a fluid medium, there is no such threshold. Instead, one
only needs to counteract friction forces linear in the (final) sliding velocity v0.



Theory and Simulation of Friction and Lubrication 69

It came as a surprise when Hirano and Shinjo suggested that static friction
between solids in ultra-high vacuum may essentially disappear as well [4, 5].
While their suggestion contradicts our intuition, which is based on every-
day experience, it does not necessarily contradict Newtonian mechanics. If
the slider and substrate have homogeneous surfaces and wear and plastic
deformation are negligible, then one may expect the same (free) energy at
the beginning of the sliding process as at its end, because of translational
invariance. In such a case, no work would have to be done on the system
implying the possibility of ultra-low friction, or, in the words by Hirano and
Shinjo, superlubricity.

The microscopic justification for the possibility of the virtual absence of
lateral forces between solids can be supported by the following argument:
There are as many bumps (or atoms) in the substrate pushing the slider to
the right as there are surface irregularities pushing it to the left. Hence, sta-
tistically speaking, there is the possibility of an almost perfect annihilation
of lateral forces. Allowing for long-range, elastic deformations does not al-
ter the almost systematic annihilation of lateral forces, unless the systems
are extremely soft or extremely rough. Although this is a subject of current
research, it appears that this statement remains valid even if one considers
surface profiles that would be characteristic of engineering surfaces such as
pistons and cylinders in car engines.

In the following, we will discuss why surfaces are usually not superlubric. In
general, this is due to energy dissipation through various mechanisms during
sliding. The knowledge of the relevant dissipation mechanisms is important
when setting up tribological simulations, as it allows one to estimate the
validity of the simulations for given laboratory conditions.

2.1 Friction Mechanisms

It has long been realized that solid friction is intimately connected to hysteresis
and to what one may call plugging motion. This is best illustrated in the model
proposed independently by Prandtl [6] and by Tomlinson [7]. In their model,
a surface atom of mass m is coupled to its lattice site via a harmonic spring of
stiffness k. The lattice site, which moves at constant velocity v0, is assumed to
be located in the origin at time t = 0. Besides the interaction with its lattice
site, the atom experiences a coupling V0 cos(2πx/a) to the substrate, where
V0 has the unit of energy and reflects the strength of the coupling, a is the
lattice constant of the substrate, and x is the current position of the surface
atom. Introducing a viscous damping proportional to velocity ẋ and damping
coefficient γ,2 the surface atom’s equation of motion reads

2 The damping term can be motivated by the following microscopic picture. When
the atom moves very slowly, some lattice vibrations will be induced in the sub-
strate so that energy – or heat – flows away from the interface. The damping term,
which may be position dependent, can be calculated in principle from generally
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Fig. 1. Illustration of an instability in the Prandtl-Tomlinson model. The sum of the
substrate potential and the elastic energy of the spring is shown at various instances
in time. The energy difference between the initial and the final point of the thick
line will be the dissipated energy when temperature and sliding velocities are very
small

mẍ + γẋ = k(v0t− x) +
2π
a
V0 sin(2πx/a) . (1)

If k is very large, i.e., k is greater than the maximum curvature of the potential,
V ′′

max = (2π/a)2V0, then there is always a unique equilibrium position xeq ≈
v0t for the atom and the atom will always be close to xeq. Consequently, the
friction will be linear in v0 at small values of v0.

Things become more interesting once V ′′
max exceeds k. Now there can and

will be more than one stable position at certain instances of time as one can see
in Fig. 1. The time dependence of the combined substrate and spring poten-
tial reveals that mechanically stable positions disappear at certain instances
in time due to the motion of the spring. Consequently, an atom cannot find a
mechanically stable position at a time t+ δt in the vicinity of a position that
was stable a small moment δt ago. At times slightly larger than t, the posi-
tion of the atom becomes unstable and, hence, it must move forward quickly
towards the next potential energy minimum. After sufficiently many oscilla-
tions around the new mechanical equilibrium, most of the potential energy
difference between the new and the old equilibrium position is dissipated into
the damping term. As a consequence, for sufficiently small v0, the dissipated
energy per sliding distance is rather independent of v0 and (in the present
example of a bistable system) similarly independent of γ.

Despite its merits, which are further discussed in Sect. 2.5, one should
not take the Prandtl-Tomlinson model too literally. There simply is no reason
why the inter-bulk coupling, reflected by V ′′

max, should be stronger than the

valid statistical mechanics arguments by integrating out the substrate’s lattice
vibrations. A more detailed justification is beyond the scope of this chapter.
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intra-bulk coupling k. But even if it were, one would have to expect more
dramatic processes than elastic instabilities, such as cold welding and plastic
deformation, so that the assumption of an elastic coupling in the slider would
break down completely. One could certainly argue that similar instabilities
may occur at larger length scales, involving collective degrees of freedom [8].
However, it appears that elastic instabilities do not contribute considerably
to dissipation [9]. A notable exception to this rule is rubber, for which sliding
friction is related to internal friction rather than to dissipation taking place
at the interface [10].

A traditional explanation of solid friction, mainly employed in engineer-
ing sciences, is based on plastic deformation [11]. It is assumed that plastic
flow occurs at most microscopic points of contact, so that the normal, local
pressures correspond to the hardness, σh, of the softer of the two opposed
materials. The (maximum) shear pressure is given by the yield strength, σy,
of the same material. The net load, L, and the net shear force, Fs, follow
by integrating σh and σy over the real area of contact, Areal, respectively,
i.e., L = σhAreal and Fs = σyAreal.3 Hence, the plastic deformation scenario
results in the following (static) friction coefficient

µs = σy/σh , (2)

where µs is defined as the ratio of Fs and L. Although this explanation for
a linear relationship between friction and load has been used extensively in
the literature, Bowden and Tabor, who suggested this idea, were aware of the
limitations of their model and only meant to apply it to contacts between
(bare) metals [11]. There are two important objections to the claim that plas-
tic deformation is generally a dominant friction mechanism. Usually, friction
between two solids does not (only) depend on the mechanical properties of the
softer of the two opposing materials, but on both materials and the lubricant
in the contact. Moreover, theoretical calculations of typical surface profiles
have shown that plastic flow should occur at only a very small fraction of the
the total number of contact points [12].

So far, we have not considered lubricants added intentionally, such as oils,
or unintentionally in the form of contaminants, such as short, airborne hydro-
carbons. However, such adsorbed molecules alter dramatically the behaviour
of sliding contacts, as long as they do not become squeezed out the micro-
scopic points of contact [13, 14]. From an engineering point of view, such
molecules keep the two opposed surfaces from making intimate mechanical
contact, thereby reducing plastic deformation and wear. However, they also
keep surfaces from becoming superlubric. The last one or two layers of lu-
bricant do not become squeezed out of the contact and solidify due to the
typically large pressures at the microscopic scale. In this regime, one gener-

3 Intimate mechanical contact between macroscopic solids occurs at isolated points
only, typically at a small fraction of the apparent area of contact. The net area
of this intimate contact is called the real area of contact Areal.
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Fig. 2. Schematic representation of the way how adsorbed atoms can lock two
non-matching solids. From [14]

ally talks about boundary lubrication. As the interactions between lubricant
particles is relatively weak, the adsorbed atoms and molecules will predomi-
nantly try to satisfy the interactions with the confining walls. This can lock
the surfaces geometrically, as illustrated schematically in Fig. 2. When sliding
the top wall relative to the substrate, an energy barrier has to be overcome,
generating a static friction force.

There are many other mechanisms leading to dissipation, although they
may be less universal than those related to boundary lubricant-induced, geo-
metric frustration. Chemical changes in lubricant molecules, reversible or ir-
reversible, produce heat. Examples are configurational changes in hydrogen-
terminated diamond surfaces [16] or terminal groups of alkane chains through
isomerization [15] and sliding- and pressure-induced changes in the coordina-
tion numbers of surface or lubricant atoms [17,18]. Although the microscopic
details differ significantly, all these examples exhibit a molecular hysteresis
similar to the one described in the context of the Prandtl-Tomlinson model.
There are also many strongly irreversible tribological phenomena, such as cold-
welding, scraping, cutting, or uncontrolled, catastrophic wear. Characterizing
them is often tedious, because many of these strongly irreversible processes
are system specific and lack a steady state. For these reasons, we will focus
mainly on non-equilibrium, steady-state type situations.

It is yet important to realize that simulating strongly irreversible processes
often requires more care than those with a well-defined steady state. Most ex-
perimental systems are open, while simulations employ confining walls and pe-
riodic boundary conditions parallel to the interface. Any debris generated will
remain in the interface in the simulations, unless special precaution is taken.
One means of simulating open systems is to incorporate lubricant reservoirs,
however, this leads to a significant increase in computational effort.

2.2 Velocity-Dependence of Friction

Solid friction is typically relatively independent of the sliding velocity v0. This
finding, also known as Coulomb’s law of friction, [19] can be rationalized nicely
in the Prandtl-Tomlinson model. A given number of instabilities occurs per
sliding distance, ∆x. Each instability will produce a similar amount of heat,
∆Q. In steady state, one may therefore associate the kinetic friction force, Fk,
with the quotient
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Fig. 3. Typical velocity relationship of kinetic friction for a sliding contact in which
friction is due to adsorbed layers confined between two incommensurate walls. The
kinetic friction Fk is normalized by the static friction Fs. At extremely small ve-
locities v∗, the confined layer is close to thermal equilibrium and consequently Fk

is linear in v∗, as to be expected from linear response theory. In an intermediate
velocity regime, the velocity dependence of Fk is logarithmic. Instabilities or “pops”
of the atoms can be thermally activated. At large velocities, the surface moves too
quickly for thermal effects to play a role. Time-temperature superposition could be
applied. All data were scaled to one reference temperature. From [20]

Fk =
∆Q

∆x
. (3)

Once temperature comes into play, the jumps of atoms may be invoked prema-
turely via thermal fluctuations. Consequently, the spring pulling the surface
atom will be less stretched on average. This will decrease the average friction
force and render Fk rate or velocity dependent, typically in the following form

Fk ≈ Fk(vref) + c

(

ln
v0

vref

)γ

, (4)

where c is a constant, vref a suitable reference velocity, and γ an exponent in
the order of unity. Of course, this equation will only be valid over a limited
velocity range. In many cases, Fk becomes linear in v0 at very small values
of v0, i.e., when one enters the linear response regime, in which the system is
always close to thermal equilibrium.

An example for the velocity dependence of friction is given in Fig. 3 for a
boundary lubricant confined between two incommensurate surfaces [20]. For
the given choice of normal pressure and temperature, one finds four decades
in sliding velocity, for which (4) provides a reasonably accurate description. In
the present case, c is positive and the exponent γ is unity. Neither of the two
statements is universal. For example, the Prandtl-Tomlinson model can best
be described with γ = 2/3 in certain regimes, [21,22] while confined boundary
lubricants are best fit with γ = 1 [20,23]. Moreover, the constant c can become
negative, in particular when junction growth is important. The local contact
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areas can grow with time due to slow plastic flow of the opposed solids or
due to adhesive interactions mediated by water capillaries, which increase in
time [8, 24,25].

2.3 Load-Dependence of Friction and Contact Mechanics

Many macroscopic systems show an almost linear relationship between (static)
friction, Fs, and load, L,

Fs = µsL , (5)

where the (static) friction coefficient, µs, does not depend on the apparent
area of contact. The origin of this linear dependence, which is also called
Amontons’ law, is subject to controversy.

One explanation of Amontons’ law is based on microscopic arguments. It
had been argued by Bowden and Tabor [11] that the following constitutive
relation for shear stress σs and normal stress σn holds microscopically

σs = σ0 + ασn (6)

for many systems, where σ0 and α are constant. From this one obtains
Fs = σ0Areal + αL, so that one may associate α as the (differential) fric-
tion coefficient provided that σ0 is sufficiently small. Simulations of boundary
lubricants for systems with flat surfaces suggest that (6) may often be rea-
sonably accurate up to pressures close to the yield strength of solids and that
the term related to σ0 are indeed often negligible [13,26].

The reason for the linearity of shear and normal pressures can be rational-
ized qualitatively by considering Fig. 2. In order for the top wall to move to
the right it must move up a slope, which is dependent upon how the adsorbed
atom is interlocked between the substrate and the slider.

Of course, this argument is highly qualitative, because it assumes implicily
that non-bonded atoms behave similar to hard disks in areas of high pressure.
Moreover, this argument must be modified if curved surfaces are considered
[27]. However, it appears to be a reasonable approximation for many systems.

Another scenario leading to Amontons’ law is related to the macroscopic
contact mechanics. Even highly polished surfaces are rough on many different
length scales. A way of characterizing roughness is to average or measure the
height difference auto-correlation function C2(∆r)

C2(∆r) =
〈
[h(r) − h(r + ∆r)]2

〉
, (7)

over one or several statistically identical samples, where h(r) is the height
of a sample’s surface at the position r = (x, y). Thus, C2(∆r) states what
variation in height we expect if we move away a distance ∆r from our current
position. For many real surfaces, power law behaviour according to

C2(∆r) ∝ ∆r2H , (8)
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is found, where H is called the Hurst roughness exponent. H = 1/2 would
correspond to a random walk in the height as we move laterally over the
surface. Surfaces satisfying 8 are called self-similar. Ways of constructing self-
similar surfaces for simulations will be described in Sect. 3.2.

When two macroscopic solids with fractal surfaces are brought into con-
tact, only a small fraction of the surfaces, the so-called real area of contact,
Areal, will be in microscopic, mechanical contact. It can be shown that the
pressure distribution averaged over these real contacts is surprisingly inde-
pendent of the externally imposed load, L, provided that the surfaces are not
too adhesive or too compliant [12, 28, 29]. This implies that Amontons’ law
can also result from macroscopic contact mechanics irrespective of the local
relation between normal and shear pressure. However, when conditions are
less ideal and adhesion and plastic deformation are starting to play a role,
the independence of the pressure distribution on the net load is not valid any
longer [30]. Hence, different scenarios can lead to the observation of Amontons’
law depending on the details of the system of interest.

2.4 Role of Interfacial Symmetry

Imagine two egg cartons placed on top of each other. If you try to move
the top carton by applying a lateral force, you will have to pull harder if
the cartons are oriented than if they are brought out of registry. If the two
cartons are separated by eggs, there still will be a tremendous influence of
the orientation on the required lateral force to slide the cartons. The same
notion holds for surfaces that are separated by confined atoms and molecules.
Commensurate surfaces, i.e., those that are identical and perfectly aligned,
will have the tendency to have much larger (static) friction than those that
are misoriented or dislike. Therefore, whenever we impose symmetries into our
systems, we risk observing behaviour that is inconsistent with observed when
these symmetries are absent. Since opposing surfaces are essentially always
dislike, unless they are prepared specifically, it will be important to avoid
symmetries in simulations as much as possible.

It may come as a surprise to some that two commensurate surfaces can
withstand finite shear strength even if they are separated by a fluid [31].
But one has to keep in mind that breaking translational invariance automat-
ically induces a potential of mean force F . This is why metals, which are
mainly glued together through “fluid-like” conduction electrons, have finite
shear moduli. Due to the symmetry breaking, commensurate walls can be
pinned even by an ideal gas embedded between them [32]. The reason is that
F scales linearly with the area of contact. In the thermodynamic limit the en-
ergy barrier for the slider to move by one lattice constant becomes infinitely
high so that the motion cannot be thermally activated and, hence, static fric-
tion becomes finite. No such argument applies when the surfaces do not share
a common period.
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From [20]

Not only static friction, Fs, but also kinetic friction, Fk, is affected by
commensurability. If two crystalline surfaces are separated by one atomic layer
only, Fk may actually be reduced due to commensurability, although static
friction is increased [20]. The strikingly different behaviour for commensurate
and incommensurate systems is demonstrated in Fig. 4.

Unfortunately, it can be difficult to make two surfaces incommensurate
in simulations; particularly when two identical, crystalline surfaces are slid
against each other. The reason is that only a limited number of geometries
conform to the periodic boundary conditions in the lateral direction. Each
geometry needs to be analyzed separately and there is little general guidance
one can give. For surfaces with trigonal symmetry, such as [111] surfaces of
face-centered cubic crystals, it is often convenient to rotate the top wall by
90◦. This rotation does not map the trigonal lattice onto itself. The numbers
of unit cells in x and y direction should be chosen such that they need to be
strained only marginally to form an interface with a square geometry. The top
view of some incommensurate structures between trigonal surfaces is shown
in Fig. 5. In most cases, the measured friction between incommensurate walls
is relatively insensitive to how incommensurability is achieved, as long as the
roughness of the two opposing walls remains constant [14].

Typical surfaces are usually not crystalline but have amorphous layers
on top. These amorphous walls are much rougher at the atomic scale than
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A B C D

Fig. 5. Projections of atoms from the bottom (solid circles) and top (open circles)
surfaces into the plane of the walls. (A through C) The two walls have the same
structure and lattice constant, but the top wall has been rotated by 0◦, 11.6◦, or
90◦, respectively. (D) The walls are aligned, but the lattice constant of the top
wall has been reduced by 12/13. The atoms can only achieve perfect registry in the
commensurate case (A). From [13]

the model crystalline surfaces, which one prefers to use for computational
convenience and for fundamental research. The additional roughness at the
microscopic level due to disorder increases the friction between surfaces consid-
erably even when they are separated by a boundary lubricant [14]. However,
no studies have been done to explore the effect of roughness on boundary-
lubricated systems systematically and only a few attempts have been made
to investigate dissipation mechanisms in the amorphous layers under sliding
conditions from an atomistic point of view.

2.5 Common Toy Models

The Prandtl-Tomlinson model introduced in Sect. 2.1 is the most commonly
used toy model for simulations of frictional phenomena. It has a tremen-
dous didactic value, because it shows nicely the important role of instabilities.
Moreover, it is used frequently to describe quite accurately the dynamics of
an atomic force microscope tip that is dragged over a periodic substrate [33].
It is worthwhile to run a few simulations of the Prandtl-Tomlinson model
and to explore its rich behaviour. In particular, interesting dynamics occurs
when k is sufficiently small such that the surface atom is not only bistable
but multistable and γ is so small that the motion is underdamped. In such
a situation, the atoms do not necessarily become arrested in the next avail-
able, mechanically stable site after after depinning and interesting non-linear
dynamics can occur, such as non-monotonic friction-velocity dependence.

Another frequently-used model system is the Frenkel Kontorova (FK)
model, in which a linear harmonic chain is embedded in an external potential.
For a review we refer to [34]. The potential energy in the FK model reads

V =
∑

i

{
1
2
k(xi+1 − b− xi)2 − V0 cos(2πxi/a)

}

, (9)
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where a and b are the lattice constant of substrate and slider respectively, and
k is the strength of the spring connecting two adjacent atoms in the slider. As
in the Prandtl Tomlinson model, finite friction is found when atoms can find
more than one mechanically meta-stable position and become unstable during
sliding. Experience indicates that it is not possible to reproduce tribological
experimental results with the FK model despite the increase in complexity
with respect to the model of Prandtl and Tomlinson. This calls into question
the use of the FK model when interpreting experimental results. In partic-
ular, when parametrized realistically and generalized to higher dimensions,
it is found that most incommensurate interfaces between crystals should be
superlubric within the approximations of the FK model [5]. Otherwise, when
instabilities do occur, the FK model can only describe the early time behav-
iour of flat sliding interfaces [35]. Conversely, in other contexts, such as the
motion of charge density waves, pinning and dissipation may be realistically
described by the FK model.

3 Computational Aspects

Simulating solids in relative motion may require considerations additional to
those needed for equilibrium simulations of bulk phases. Shear and load need
to be imposed in a way that mimics experimental setups. Surfaces have to be
defined and often it is important to include their deformation in the simulation
accurately, which we want to do at a small computational expense. Heat needs
to be removed, which requires us to know the properties of thermostats. This
chapter will be concerned with these and related aspects.

3.1 Imposing Load and Shear

In many simulations of tribological phenomena, two opposed solids are sep-
arated by a lubricating film. A sketch is shown in Fig. 6. It is natural to
subdivide the system into a substrate, a slider, and the remaining system.
Sometimes, one may only be interested in the bulk properties of a lubricant
under shear or under extreme pressure conditions, in which case, there is no
need to introduce surfaces, see the discussion in Sect. 3.4. Otherwise, when
walls are included, it is certainly desirable to keep the interface as unperturbed
as possible from any external mechanical forces. This is why it is good practice
to only couple the outermost layers of the substrate and slider to constraints,
external forces, and thermostats. In the following, the term bottom layer will
be used to specify the outermost layer of the substrate and top layer will stand
for the outermost layer of the slider, although one may certainly choose more
than one single layer to be part of it. All explicitly simulated atoms that are
not part of the outermost layers will be referred to as the embedded system,
even if they belong to the confining walls.
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equilibrium site
atom in top layer
upper wall atom

Fig. 6. Left: Schematic graph of the set-up for the simulation of rubbing surfaces.
Upper and lower walls are separated by a fluid or a boundary lubricant of thickness
D. The outermost layers of the walls, represented by dark color, are often treated
as rigid unit. The bottom most layer is fixed in laboratory system and the upper
most layer is driven externally, for instance by a spring of stiffness k. Also shown
is a typical, linear velocity profile for a confined fluid with finite velocities at the
boundary. The length at which the fluid’s drift velocity would extrapolate to the
wall’s velocity is called the slip length Λ. Right: The top wall atoms in the rigid
top layer are set onto their equilibrium sites or coupled elastically to them. The
remaining top wall atoms interact through interatomic potentials, which certainly
may be chosen to be elastic

By convention, we will keep the center of mass of the bottom layer fixed and
couple the top layer to an external driving device. There are three commonly
used modes under which top layers are driven:

1. Predefined trajectory, e.g., X = X(t)
2. Predefined force, e.g., F = F (t)
3. Pulling with a spring, e.g., Fx = −k[X −X0(t)], where Fx would be the

force acting on the top layer in x direction, k would reflect the (effective)
stiffness of the driving device, and X0(t) denotes the position of the driving
device as a function of time.

The typical choices for the predefined trajectories or forces are constant veloc-
ity, including zero velocity, constant separation, and constant forces and/or
oscillatory velocities and forces. It is certainly possible to drive different Carte-
sian coordinates with different modes, e.g., to employ a constant force or load
perpendicular to the interface and to use a predefined velocity, constant or
oscillatory, parallel to a direction that has no component normal to the inter-
face. Mimicking experiments done with a tribometer would typically best be
done in constant velocity or constant force modes, whereas rheometers usually
employ oscillatory motion in lateral direction.

Note that pulling a point particle over a periodic potential in mode (3)
resembles the Prandtl-Tomlinson model discussed in the previous section. As
is the case for the Prandtl Tomlinson model, the result for the (kinetic) friction
force can depend sensitively on the stiffness of the driving spring, see also
Fig. 4. Weak springs tend to produce higher friction than soft springs. This
can be important to keep in mind when comparing simulations to experiments.



80 M.H. Müser

The measured friction is not only a function of the interface but also of how
the interface is driven.

It is often beneficial to define a coordinate Rtl that describes the center
of mass of the top layer. There are three common ways how to set up the
top layer. (i) To confine the position of top layer atoms rn to (lattice) sites
rn,0, which are connected rigidly to the top layer. (ii) To couple the top
layer atoms elastically to sites rn,0 fixed relative to the top layer, e.g., with
springs of stiffness k. (iii) To employ an effective potential, such as a Steele
potential, VS, [36] between embedded (em) atoms and top layer. There are
specific advantages and disadvantages associated with each method. Approach
(i) may be the one that is most easily coded, (ii) allows one to thermostat
effectively the outermost layer, while (iii) is probably cheapest in terms of
CPU time.

Depending on the choice of the interaction between the top layer and
the embedded system, the force on the top wall, Ftl, needs to be evaluated
differently.

Ftl = Fext +






∑
n∈tl fn (i)∑
n∈tl −k (rn − rn,0) (ii)∑
n∈em −∇nVS(rn) (iii)

, (10)

where fn in line (i) denotes the force on atom n and ∇nVS is the gradient of
the surface potential with respect to an embedded atom’s position. Ftl will be
used to calculate the acceleration of the top layer, resulting in a displacement
∆Rtl. This displacement needs to be added to the sites rn,0 contained in the
top layer in cases (i) and (ii).

It is certainly possible to choose the mass Mtl of the top layer arbitrarily.
For example, one may have Mtl incorporate some mass of the top wall that is
not explicitly included in the simulation. However, when doing this, one needs
to be aware of two effects. First, the time scale gap between the fast atomic
motion and the slow collective motion of the confining wall. However, having
the top wall move on shorter time scales than in real systems may help to
overcome the time scale gap between simulations and experiments. Second,
the measured friction may depend on the mass of the top wall when it is pulled
with a spring. Large masses favor smooth sliding over stick-slip motion and
hence reduce the measured friction [37,38]. In general, it turns out to be very
difficult to deduce information on the embedded system from tribological or
rheological experiments without considering carefully the properties and the
driving of the external system [39].

3.2 Including Surface Roughness and Elastic Deformations

Surface Geometries

Crystalline surfaces are often employed both experimentally and in simula-
tions, when studying friction from a fundamental point of view. It is a rela-
tively straightforward procedure to set up crystalline surfaces, which is why
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Fig. 7. Flat elastic manifold pressed against a self-affine rigid surface for different
loads L per atom in top wall. The inset shows some atomic-scale details of the
contact

we will not comment on them in any more detail. However, as mentioned
in Sect. 2.3, many (engineering) surfaces are self similar over several length
scales. A profile of a self-similar surface geometry is shown in Fig. 7 together
with a flat elastic object pressed onto the rough substrate. In the recent past,
there has been an intensified interest in modeling more realistically surface
profiles, however, so far the research has focused on contact mechanics rather
than on sliding motion between fractal surfaces [12,28,29].

There are various ways of constructing self-affine surfaces [40]. Some of
them do not allow one to produce different realizations of surface profiles,
for example by making use of the Weierstrass function. Such methods should
be avoided in the present context, because it would be hard to make sta-
tistically meaningful statements without averaging over a set of statistically
independent realizations. An appropriate method through which to construct
self-similar surfaces is to use a representation of the height profile h(x) via its
Fourier transforms h̃(q).

In reciprocal space, the self-affine surfaces described in (7) and (8) are
typically characterized by the spectrum S̃(q) defined as

S̃(q) = 〈h̃(q)h̃∗(q)〉 , (11)

with

〈h̃(q)〉 = 0
〈h̃(q)h̃∗(q′)〉 ∝ q−2H−dδ(q − q′) , (12)

where d is the number of independent coordinates on which the height de-
pends, i.e., d = 1 if h = h(x), and d = 2 if h = h(x, y). S̃(q) is the Fourier
transform of the height autocorrelation function S(∆x) = 〈h(x)h(x + ∆x)〉.
The height-difference autocorrelation function C2(∆x) and S(∆x) are related
through 2S(∆x) = C2(0) − C2(∆x).

In principle, to fully characterize the stochastic properties of surfaces,
higher-order correlations of the height function have to be incorporated. How-
ever, doing this is tedious computationally and, in most cases, will probably
not change significantly the results of the simulation.

One approach to the generation of height profiles is to draw (Gaussian)
random numbers for the real and complex parts of h̃(q) with a mean zero and
defined variance and to divide the random number by a term proportional to
qH+d/2, so that (12) is satisfied. Furthermore, h̃(−q) must be chosen to be
the complex conjugate to ensure that h(x) is a real-valued function.
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Alternatively, one may simply write h(x) as a sum over terms h(q) cos(qx+
ϕq). In this case, one needs to draw one (Gaussian) random number with the
proper second moment of h(q) with zero mean and one random number for
each phase ϕq, which is uniformly distributed between 0 and 2π and filter the
absolute value of h(x) in the same way as described in the previous paragraph.
There are also other techniques which allow one to generate fractal surfaces.
One of them is the so-called midpoint algorithm, described in [30].

Multiscale Approaches

It is certainly desirable to simulate as many layers of the confining walls as
possible, in order to closely reproduce experimental situations. However, from
a computational point of view, one would like to simulate as few degrees of
freedom as possible. Unless conditions are special, all processes far away from
the interface can be described quite accurately within elastic theory or other
methods that allow for a description of plastic deformations, such as finite
elements. The advantage of these continuum-theory based methods is that it
is possible to coarse-grain the system increasingly as one moves away from
the interface, thereby reducing the computational effort. New methodological
developments even allow one to couple atomistic simulations to continuum-
theory descriptions [41, 42]. It would be out of the scope of this chapter to
provide a detailed description, however, the coordination discretisation scheme
shown in Fig. 8 alludes to how one must proceed when incorporating different
mesh sizes into a simulation.

Fig. 8. Representation of a finite-element mesh for the simulation between a fractal,
elastic object and a flat substrate. From [12]
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While quasi-static processes can be modeled quite well with continuum-
mechanics based models employing varying mesh size, this is not the case for
dynamic processes. Whenever there is a region where the coarse-grain level is
changed, one risks to introduce artificial dynamics. In particular, the transmis-
sion of sound waves and energy density is suppressed whenever the mesh size
changes. It is not possible to have the proper momentum and energy trans-
fer across the boundary when employing a Hamiltonian-based description. It
is important, however, to realize that the computational effort required to
simulate a three-dimensional system of linear dimension L only scales with
L2 lnL using coarse-grained models, as opposed to the L3 scaling for brute-
force methods. It is often advisable to sacrifice realistic dynamics rather than
system size.

An alternative method would be to integrate out the elastic degrees of
freedom located above the layer that we chose to be the top layer in our
simulation [43]. The elimination of the degrees of freedom can be done within
the context of Kubo theory, or more precise Zwanzig formalism, leading to
effective (potentially time-dependent) interactions between the atoms in the
top layer [44, 45]. These effective interactions include those mediated by the
degrees of freedom, which have been integrated out. For periodic solids, a
description in reciprocal space decouples different wave vectors, q, at least
as far as the static properties are concerned. This in turn implies that the
computational effort also remains in the order of L2 lnL, provided that use is
made of the fast Fourier transform for the transformation between real and
reciprocal space. The description is exact for purely harmonic solids, so that
one can mimic the static contact mechanics between a purely elastic lattice
and a substrate with one single layer only.

There is even the possibility of including dynamical effects in terms of time-
dependent friction terms (plus random forces at finite temperatures) [44, 45].
However, it may not be advisable to take advantage of this possibility, as the
simulation would become increasingly slow with increasing number of time
steps. Moreover, the simulation will slow down considerably in higher dimen-
sions due to the non-orthogonality of the dynamical coupling in reciprocal
space.

To be specific regarding the formalism, let ũqiα(t) denote the α component
of the displacement field associated with wave vector q and eigenmode i at
time t.4 In the absence of external forces, which can simply be added to the
equation, the equation of motion for the coordinates that are not thermostat-
ted explicitly, ũqiα, would read:

M ¨̃uqiα(t)=−Gqiuqiα(t)+
∫ t

−∞
dt′
∑

q′,j

3∑

β=1

γq′jβ
q iα (t−t′)u̇q′jβ(t′)+Γq iα(t) , (13)

4 At this point, all interactions within the top plate and above it have already
be integrated out. The ũqiα are only eigenmodes within this reduced or effective
description but not of the full semi-infinite solid.
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where the Gqi are the (static) Green’s functions, or effective spring constants,
associated with eigenmode i and wavelength q. The knowledge of these func-
tions enables us to work out the static contact mechanics. The time-dependent
damping coefficients γq′jβ

q iα (t − t′) in (13) reflect the dynamical coupling be-
tween various eigenmodes. There is no reason why this coupling should be
diagonal in any of its indices and thus, including the terms related to dynam-
ics, increases memory requirements and slows down the speed of the calcula-
tion tremendously, i.e., beyond the expense of approximating a semi-infinite
solid by a discrete, elastic lattice of size L3. Included in (13) are random forces
Γq iα(t), which must be used at finite temperature to counterbalance the time-
dependent damping term. The random and damping terms have to be chosen
such that they satisfy the fluctuation-dissipation theorem [46].

3.3 Imposing Constant Temperature

The external driving imposed on solids leads to dissipation of energy or heat.
In experiments, this heat diffuses away from the interface into the bulk and
eventually into the experimental apparatus. In simulations, system sizes are
rather limited which makes it necessary to remove heat artificially if one wants
to control temperature. Ideally, this is done by thermostating the outermost
layers only. Sometimes, however, there are no confining walls, for example in
simulations of bulks fluids, or for some reason, the confining walls are better
kept rigid. In these cases, the thermostat needs to be applied to the sheared
system directly.

There are numerous ways of thermostatting systems that are in equilib-
rium, each with its specific advantages and disadvantages. For situations in
which the system is far from equilibrium, stochastic thermostats have proven
particularly beneficial, Langevin thermostats being the prototype, [47] and
dissipative particle dynamics (DPD) being a modern variation thereof [48].
While stochastic thermostats can be motivated in principle from linear re-
sponse theory, i.e., there are rigorous schemes for the derivation of the damp-
ing terms and the fluctuation terms contained in stochastic thermostats [46].
We will not provide these arguments here and instead focus on their imple-
mentation and properties.

Langevin Thermostat

In the Langevin description, one assumes that the degrees of freedom that are
not explicitly taken into account, exert, on average, a damping force linear
in velocity, γiṙi, as well as additional random forces Γi(t). This leads to the
following equation of motion for particle number i:

mir̈i + γi(ṙi − 〈vi〉) = −∇iV + Γi(t) , (14)

where the damping coefficient γi and the α component of the random forces
Γiα(t) acting on particle i should obey



Theory and Simulation of Friction and Lubrication 85

〈Γiα(t)〉 = 0
〈Γiα(t)Γjβ(t′)〉 = 2γikBT δ(t− t′) δij δαβ

→ 2γikBT
1
∆t

δt,t′ δij δαβ , (15)

in order to satisfy the fluctuation-dissipation theorem. In (14), V denotes the
total potential energy and 〈vi〉 the expected drift velocity, [49] e.g., 〈vi〉 = 0 in
the bottom layer and 〈vi〉 = vtl if atom i belongs to the to top layer. The last
line in (15) refers to the discrete time description used in molecular dynamics
in which ∆t is the time step. When using predictor-corrector methods (velocity
Verlet is a second-order Gear predictor corrector method), it is necessary to
keep in mind that random terms cannot be predicted. Therefore, one should
only apply the predictor-corrector schemes to the deterministic parts of the
equation of motion. In those cases, where very high damping is employed, time
steps can be kept large when employing efficient integration schemes [52]. In
general, however, one should keep thermostating sufficiently weak as to avoid
externally imposed overdamping.

It also needs to be emphasized that there is no need to chose the random
forces from a Gaussian distribution, unless one is interested in short-time dy-
namics. It is much faster to generate uniformly distributed random numbers
for the Γi(t)’s on an interval [−

√
3σ,

√
3σ], where σ is the standard deviation

of the Gaussian distribution. Moreover, having a strict upper bound in the
Γi(t)’s eliminates potentially bad surprises when using higher-order predic-
tor corrector schemes and, thus, allows one to use a large time step while
producing accurate thermal averages and trajectories.

It is certainly also possible to make damping and, hence, thermostatting
direction dependent, for example, by suppressing the damping terms parallel
to the sliding direction. This is particularly important when the system has a
small viscosity or when the shear rates are high, because one is likely to create
artificial dynamics otherwise. Using the correct velocity profile 〈v〉 prior to
the simulation can also reduce the problem of perturbing the dynamics in an
undesirably strong fashion. However, anticipating certain velocity profiles will
always suppress other modes, e.g., assuming laminar flow in a thermostat is
likely to artificially bias towards laminar flow [53] and may create additional
artifacts [54–56].

Effects of Damping on Calculated Friction

Making assumptions on how heat is dissipated can also influence solid friction,
although typically it is less of an issue. This can be most easily explored within
the Prandtl Tomlinson model. The lessons to be learned apply to a large degree
to more general circumstances. In the original formulation, see (1), damping
takes place relative to the substrate. However, one may also assume that the
conversion of energy into heat takes place within the top solid [57]. Thus a
generalized Prandtl-Tomlinson model would be
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mẍ + γsubẋ + γtop(ẋ− v0) = −∇V − k(x− v0t) + Γsub(t) + Γtop(t) , (16)

where the indices “sub” and “top” denote the thermal coupling to substrate
and top solid respectively.

To investigate the way in which the thermostat affects frictional forces, it is
instructive to study slightly underdamped or slightly overdamped motion. In
the following, we will set m = 1, a = 1, V0 = 1, k = 0.5V ′′

max. Damping, γ, and
temperature, T , will be varied, but we will first consider the athermal case T =
0. With this choice of parameters, the maximum curvature of the potential,
V ′′

max, will be greater than k so that instabilities will occur under sliding leading
to finite kinetic friction at small v0 in the absence of thermal fluctuations.
Figure 9(a) shows the friction-velocity dependence for the following choices of
thermostats (i) γs = 1, γt = 0, (ii) γs = 0, γt = 1/4, (iii) γs = 0, γt = 1, (iv)
γs = 0, γt = 4.

We see that the kinetic friction is rather insensitive to the precise choice
of the thermostat for small values of v0, at least as long as the temperature
is sufficiently small. This is because friction is dominated by fast “pops” in
that regime. This conclusion becomes invalid only if γ is sufficiently small
such that a/v0, the time it takes the driving stage to move by one lattice
constant, is not long enough to transfer most of the “heat” produced during
the last instability into the thermostat. At high velocities, the sliding velocity
v0 is no longer negligible when compared to the peak velocity during the
instability. This renders the friction-velocity dependence susceptible to the
choice of the thermostat. Damping with respect to the substrate leads to
strictly monotonically increasing friction forces, while damping with respect
to the top wall can result in non-monotonic friction-velocity relationships.

So far, we have considered the zero temperature case. Once finite ther-
mal fluctuations are allowed, there is a qualitatively different friction-velocity
relationship, which can be shown by choosing thermal energies as small as
kBT = 0.1V0, see Fig. 9(b). Jumps can now be thermally activated and the
friction force decreases with decreasing velocity. Yet again, at small v0 there
is little effect of the thermostat on the measured friction forces. Changing
γt by as much as a factor of 16 results in an almost undetectable effect at
small v0. At very small sliding velocities, v0, the system can get very close
to thermal equilibrium at every position of the top wall, which is why linear
response theory is applicable in that regime. It then follows that friction and
velocity are linear at sufficiently small values of v0. This is generally valid un-
less the energy barriers to sliding are infinitely high, which explains the linear
dependence of friction upon the velocity at small v0 and finite T , as shown in
Fig. 3.

Dissipative-Particle-Dynamics Thermostat

A disadvantage of Langevin thermostats is that they require a (local) refer-
ence system. Dissipative particle dynamics (DPD) overcomes that problem by
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Fig. 9. Friction velocity relationship Fk(v0) in the Prandtl Tomlinson model at (a)
zero and (b) finite thermal energy, i.e., kBT = 0.1V0. Different damping with respect
to substrate γs and top solid γt for different realizations of damping. The arrow in
(b) points to the zero-velocity limit in the athermal case

assuming damping and random forces in the center-of-mass system of a pair
of atoms. The DPD equations of motion read

mr̈i = −∇iV −
∑

j

γij(ṙi − ṙj) + Γij(t) , (17)

where Γij(t) = −Γji(t). The usual relations for fluctuation and dissipation
apply

〈Γij,α(t)〉 = 0 (18)

〈Γij,α(t)Γkl,β(t′)〉 = 2kBTγij (δikδjl + δilδjk) δαβ
δt,t′

∆t
(19)

Note that γij can be chosen to be distance dependent. A common method
is to assume that γij is a constant for a distance smaller than a cut-off radius
rcut, DPD and to set γij = 0 otherwise. Since calculating random numbers may
become a relatively significant effort in force-field based molecular dynamics,
it may be sensible to make rcut, DPD smaller than the cut-off radius for the
interaction between the particles, or to have the thermostat act only every
few time steps.

Among the advantages of DPD over Langevin dynamics are conservation of
momentum and the ability to describe hydrodynamic interactions with longer
wavelengths properly, [50,51] ensuring that “macroscopic” properties are less
effected with DPD than with Langevin dynamics. To see this, it is instructive
to study the effect that DPD and Langevin have on a one-dimensional, linear
harmonic chain with nearest neighbor coupling, which is the simplest model
to study long wave length vibrations.

The Lagrange function L of an unthermostated harmonic chain is given
by
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L =
N∑

i=1

m

2
ẋ2

i −
k

2
(xi − xi−1 − a)2 , (20)

where a is the lattice constant, k the stiffness of the springs. Periodic boundary
conditions are employed after a distance Na. The equations of motion at zero
temperature with damping are

mẍi + γẋi = −k(2xi − xi+1 − xi−1) (Langevin) (21)
mẍi + γ(2ẋi − ẋi+1 − ẋi−1) = −k(2xi − xi+1 − xi−1) (DPD) (22)

As usual it is possible to diagonalize these equations of motion by transforming
them into reciprocal space. The equations of motion of the Fourier transforms
x̃(q, ω) then read

−mω2x̃ + imωγx̃ + 4 sin2(qa/2)kx̃ = 0 (Langevin) (23)
−mω2x̃ + 4 sin2(qa/2)imωγx̃ + 4 sin2(qa/2)kx̃ = 0 (DPD) . (24)

Thus while Langevin and DPD damping do not alter the eigenfrequencies of

the chain, i.e., their q dependence is, ω0(q) =
√

4 sin2(qa/2)/m, the quality
factor Q, defined as the ratio of eigenfrequency and damping, does differ
between the two methods,

Q(q) =
ω0(q)
γ

(Langevin)

Q(q) =
ω0(q)
γ

1
4 sin2(qa/2)

(DPD) . (25)

In the long wavelength limit where q → 0, Langevin dynamics will always
be overdamped, while DPD dynamics will be underdamped, provided that
the system is not intrinsically overdamped as is the case in the vicinity of a
continuous phase transition. Although these calculations have only be done
for a linear harmonic chain, the results suggest that DPD has little effect on
dynamical quantities that couple to long wavelengths. One of them would
be the bulk viscosity of a system, although the estimation of DPD induced
artifact in viscosity requires a different treatment than the one for sound
waves [51]. Nevertheless, it was found that the measured bulk viscosity in
sheared fluids depended on the precise choice of γ only in a negligible manner
at least as long as γ was kept reasonably small [51].

In some cases, it may yet be beneficial to work with Langevin thermostats.
The reason is that (elastic) long wavelength modes equilibrate notoriously
slowly. Imagine we press an elastic solid onto a fractal surface. As the DPD
thermostat barely damps long-range oscillations, we must expect a lot of
bumping before the center-of-mass of the top wall finally comes to rest. Con-
versely, Langevin dynamics can lead to faster convergence because it couples



Theory and Simulation of Friction and Lubrication 89

0 1000 2000 3000 4000 5000
t

−30

−20

−10

0

Z
tl
(t

)

Langevin
DPD

γDPD=10γLangevin

Fig. 10. Time dependence of the normal position Ztl of an elastic solid, which is
pressed against a self-affine substrate similar to the one shown in Fig. 7. Two different
damping/thermostating schemes are employed, Langevin (broken lines) and DPD
(full lines). Although the damping coefficient is 10 times greater in DPD than in
Langevin, DPD-based dynamics are too strongly underdamped to relax efficiently
to the right position

more strongly to long-wavelength oscillations. Figure 10 confirms this expecta-
tion. The Langevin-thermostatted system quickly reaches its mechanical posi-
tion, while the DPD-thermostatted system is strongly underdamped, although
the damping coefficient was 10 times larger for DPD than for Langevin.

In general, one needs to keep in mind that equilibrating quickly and pro-
ducing realistic dynamics (or calculating thermal expectation values) are often
mutually exclusive in simulations. It is necessary to consider carefully which
aspect is more important for a given question of interest.

3.4 Determination of Bulk Viscosities

Theoretical Background: Role of Length Scales

In some cases friction between two surfaces is dominated by the bulk viscosity
of the fluid embedded between the two surfaces [58]. When the surfaces are
sufficiently far from one another and shear rates are low, one can usually
assume that the velocity of the fluid near solid surfaces is close to the velocity
of those surfaces. This scenario would be called a stick condition. As the
distance, D, between the surfaces is decreased, one might have partial slip as
alluded to in Fig. 6, in which the slip length, Λ, is introduced. The calculation
of Λ from atomistic simulations is a subtle issue, [59] which we will not touch
further upon here. When the fluid is confined even further, the concept of
slip length might break down altogether and the measured friction becomes a
true system function, which cannot be subdivided into smaller, independent
entities. The discussion is summarized in the following equation
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Fig. 11. Damping coefficient γrheo = F/Av obtained from simulating two atom-
ically flat surfaces separated by a simple fluid consisting of monomers at constant
temperature and normal pressure. Different coverages were investigated. The num-
bers in the graph denote the ratio of atoms contained in the fluid Nfl relative to
the atoms contained per surface layer of one of the two confining walls Nw. The
walls are [111] surfaces of face-centered-cubic solids. They are rotated by 90◦ with
respect to each other in the incommensurate cases. Full circles represent data for
which Nfl/Nw is an integer. The arrow indicates the point at which the damping
coefficients for commensurate walls increases exponentially

F/A =






ηv/D hydrodynamic regime
ηv/(D + Λ) moderate confinement
? strong confinement

, (26)

where F/A is the force, F , per surface area, A, required to slide two solids
seperated by a distance, D, at a velocity, v. η denotes the (linear-response)
viscosity of the fluid between the walls. Figure 11 illustrates this point fur-
ther. Shown is the linear response of a system similar to the one in the inset
of Fig. 4. At large separations, the behaviour is reminiscent of hydrodynamic
lubrication, i.e., the damping coefficient, γrheo = F/Av, is approximately in-
versely proportional to D. As D is decreased, the shear response is starting
to become very sensitive to the relative orientation of the two surfaces. In
fact, the damping force for commensurate surfaces increases by several or-
ders of magnitude by going from 4 layers to 3 layers of lubricant atoms. The
large values for the effective damping can be understood from the discussion
of lubricated commensurate surfaces in Sect. 2.4. Keep in mind that the fi-
nite size of the walls prevents the energy barrier to become inifinitely large
for the commensurate walls. This is the reason why damping remains finite.
Incommensurate walls do not show such size effects.

For a more detailed discussion of flow boundary conditions we refer to [2].
Here, it shall only be said that the two key ingredients from a microscopic
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point of view are adhesion and the roughness of the walls. Perfectly flat walls
will produce a perfect slip condition, while rough walls favor stick conditions.
Increasing adhesion will also favor stick conditions at fixed roughness.

Lees-Edwards Boundary Conditions

In the hydrodynamic regime, it is unnecessary to impose shear via moving
walls. It is often desirable to shear the fluid without any boundary effects.
This can be achieved with the help of Lees-Edwards periodic boundary con-
ditions, [60] which are illustrated in Fig. 12. Periodic boundary conditions are
employed in all three spatial directions. However, while the center-of-mass of
the central simulation cell remains fixed in space, many of its periodic images
are moved parallel to the shear direction. As a consequence, even when a par-
ticle is fixed with respect to the central image, the distance to its periodically-
repeated images will change with time if the vector connecting the two images
contains a component parallel to the shear gradient direction.

To be specific, let Rij denote the position in the periodically repeated cell
which is the i’s image to the right and the j’s image on top of the central cell.
(A potentially third dimension remains unaffected and will therefore not be
mentioned in the following.) The position in real space of the vector Rij =
(X,Y )ij would be

(
X
Y

)

ij

=
(
X
Y

)

00

+
[

1 ε̇ t
0 1

](
iLx

jLy

)

, (27)

ε̇ being the shear rate, and Lx and Ly being the length of the simulation
cell in x and y direction, respectively. Thus, conventional periodic boundary

t=0 t=t1 t=2t1

x

y

shear direction

Fig. 12. Visualizations of Lees-Edwards periodic boundary conditions. At time
zero, t = 0, regular periodic boundary conditions are employed. As time moves on,
the periodic images of the central simulation cell move relative to the central cell in
the shear direction as shown in the middle and the right graph. Circle and square
show points in space that are fixed with respect to the (central) simulation cell. It
is important to distribute the effect of shear homogeneously through the simulation
cell such as indicated by the dashed lines. Otherwise, velocities will be discontinuous
in shear direction whenever a particle corsses the simulation cell’s boundary across
the shear gradient direction. In this graph, x corresponds to the shear direction and
y to the shear gradient direction
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conditions can be reproduced by setting ε̇ to 0. When using Lees-Edwards
periodic boundary condition, thermostatting is most naturally done with DPD
thermostats, because no reference system needs to be defined.

When integrating the equations of motion, it is important to not only
impose the shear at the boundaries, because this would break translational
invariance. Instead, in each MD step of size ∆t, we need to correct the position
in shear direction. This is done, for instance, in the following fashion:

Xn+1 = Xn + ∆Xn + ε̇∆tYn , (28)

where ∆Xn is the change in the y coordinate if no external shear were ap-
plied. This way, the effect of shear is more homogeneoulsy distributed over
the simulation.

A better alternative to the implementation of Lees-Edwards boundary con-
ditions is the formalism put forth by Parrinello and Rahman for the simulation
of solids under constant stress [61]. They described the positions of particles
by reduced, dimensionless coordinates rα, where the rα can take the value
0 ≤ rα < 1 in the central image. Periodic images of a particle are generated
by adding or subtracting integers from the individual components of r.

The real coordinates of R are obtained by multiplying r with the matrix h
that contains the vector spanning the simulation cell. In the present example,
this would read

Rα =
∑

β

hαβrβ (29)

h =
[
Lx 0
0 Ly

] [
1 ε̇ t
0 1

]

. (30)

The potential energy, V , is now a function of the reduced coordinates and the
h-matrix. For the kinetic energy, one would only be interested in the motion
of the particle relative to the distorted geometry so that a suitable Lagrange
function, L0, for the system would read

L0 =
∑

i

1
2
mi




∑

β

hαβ ṙiβ



− V (h, {r}) , (31)

in which the h matrix may be time dependent. From this Lagrangian, it is
straightforward to derive the Newtonian equations for the reduced coordi-
nates, which can then be solved according to the preferred integration schemes.
One advantage of the scheme outlined in (29)–(31) is that it is relatively easy
to allow for fluctuations of the size of the central cell. This is described further
below.

Geometric and Topological Constraints

Note that Lx and Ly can be chosen to be time dependent. When simulating
simple fluids under shear, there is no particular reason why they should be
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chosen independent from one another. However, when simulating self-assembled
monolayers under shear, which have received significant attention due to their
technological applications, it may be necessary to allow independent fluctu-
ations of the cell geometry along different spatial dimensions. This will be
discussed in the context of diblock copolymers.

The most simple diblock copolymers are linear molecules, in which one
part of the chain consists of one type of monomer, say polystyrene (PS), and
the other one of another type, say polybutadiene (PB), see Fig. 13. PS and PB
usually phase separate at low temperatures, however, due to their chemical
connectivity, blockcopolymers cannot unmix on a macroscopic scale. They can
only phase separate on a microscopic scale, whose size is determined by the
length of the polymers.

When lamellar structures are formed, it is necessary to choose the dimen-
sion of the simulation cell commensurate with the intrinsic periodicity of the
lamellae, in order to avoid any pressure that is unintentionally exerted due to
geometric constraints. It is therefore desirable to allow the system to fluctu-
ate parallel to “solid directions,” which are introduced in Fig. 13. For these
directions, it would be appropriate to employ the usual techniques related to
constant stress simulations [61].

Let us consider the three-dimensional case and further work within the
Parrinello-Rahman framework. A rather general three-dimensional h matrix
will be considered

h =




Lxx 0 Lxz

0 Lyy Lyz

Lxz Lyz Lzz








1 ε̇ t 0
0 1 0
0 0 1



 . (32)

Solid

Fluid

Fluid

Fig. 13. Schematic representation of the microphase separation of block copoly-
mers. The left graph shows atomic-scale details of the phase separation at interme-
diate temperatures, the right graph a lamellar phase formed by block copolymers
at low temperatures. The block copolymers have solid-like properties normal to the
lamellae, due to a well-defined periodicity. In the other two directions, the system
is isotropic and has fluid-like characteristics. From [62]
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It is now possible to treat the variables Lαβ as generalized coordinates and
allow them to adjust within the MD simulation. For this purpose, it is neces-
sary to define a kinetic energy Tcell associated with the fluctuation of the cell
geometry as a bilinear function of generalized velocities L̇αβ ,

Tcell =
∑

αβγδ

1
2
MαβγδL̇αβL̇γδ , (33)

where Mαβγδ must be a positive definite matrix with the unit of mass. Though
the optimum choice for the M -matrix is a matter of discussion, [63] a reason-
able approach is to treat the various L̇αβ as independent, uncoupled variables
and to assign the same mass Mcell to all diagonal elements, Mαβαβ which
simplifies (33) to

Tcell =
∑

α,β≤α

1
2
McellL̇

2
αβ . (34)

It is often sensible to choose Mcell such that the simulation cell adjusts on
microscopic time scales to the external pressure.

The Lagrange function L for Lees-Edwards boundary conditions combined
with Parrinello Rahman fluctuations for the cell geometry now reads

L = L0 + Tcell − pdeth , (35)

where p is an isotropic pressure and deth the volume of the simulation cell.
The Newtonian equations of motion for the generalized coordinates Lαβ and
ri follow from the Lagrange formalism. Furthermore, it is possible to couple
fluctuating cell geometries not only to constant isotropic pressure but also
to non-isotropic stresses. The description of these approaches is beyond the
scope of the present manuscript, but they can be found in the literature [61].

When studying sytems with mixed “fluid” and “solid” directions, it is
important to keep in mind that each solid direction should be allowed to
breathe and fluid directions need to be scaled isotropically or to be constrained
to a constant value. Allowing two fluid directions to fluctuate independently
from one another allows the simulation cell to become flat like a pancake,
which we certainly would like to avoid. To give an example, consider Fig. 14,
in which a lamellar block copolymer phase is sheared. The convention would
be to have the shear direction parallel to x and the shear gradient direction
parallel to y. There is no reason for the simulation cell to distort such that
Lxz = Lyz = 0 would not be satisfied on average, so one may fix the values
of Lxz and Lyz from the beginning. There is one solid direction plus two fluid
directions. We can also constrain Lxx to a constant value, because the shear
direction will always be fluid and there is another fluid direction that can
fluctuate. This means that we should allow the simulation cell to fluctuate
independently in the shear and the shear gradient direction. Yet during the
reorientation process, i.e., during the intermediate stage shown in Fig. 14,
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shear direction initial intermediate final

Fig. 14. A lamellar block copolymer phase is reoriented through external shear.
The initial phase has the director of the lamellae parallel to the shear gradient
direction. The most stable state would be to orient the director parallel to the shear
and shear gradient direction. However, the reorientation process gets stuck before
true equilibrium is reached. The stuck orientation is relatively stable, because the
lamellae have to be broken up before they can further align with respect to the shear
flow. From [64]

simulation cells do have the tendency to flatten out, because periodicity and
hence solid like behaviour is lost for a brief moment in time.

It is interesting to note that the reorientation process of the lamellae does
not find the true equilibrium state but gets stuck in a metastable state. The
periodic boundary conditions impose a topological constraint and prevent
the system from simply reorienting. It is conceivable that similar metastable
states are also obtained experimentally, although the nature of the constraints
differs in both cases. One means of overcoming this topological constraint is
to impose a higher temperature, Th, at the boundaries of the simulation cell
(e.g. at 0 ≤ ry ≤ 0.2 and 0 ≤ rz ≤ 0.2) and to keep the temperature low
in the remaining system [62]. This would melt the lamellar structure at the
boundary and allow the remaining lamellae to reorient freely with respect to
the shear flow.

4 Selected Case Studies

The last few years have seen an increasing number of tribological simulations
that incorporate realistic potentials and/or realistic boundary conditions. Un-
fortunately, it is not possible in this chapter to give all of these studies the
exposure that they may deserve. Instead, two subjects will be selected. One
deals with the occurrence and breakdown of superlubricity. The other subject
evolves around the chemical complexity of real lubricant mixture and ways
how simulations can aid in the rational design of lubricant mixtures.

4.1 Superlubricity and the Role
of Roughness at the Nanometer Scale

In Sect. 2, it is argued that two three-dimensional solids with clean, flat sur-
faces should be superlubric, unless conditions are extreme. Calculations of
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Hirano and Shinjo, in particular, supported this picture at an early stage for
three-dimensional solids and realistic model potentials [4,5]. Theoretical con-
siderations, moreover, predict that low-dimensional systems are less likely to
be superlubric because they are more easily deformed on large length scales
than highly-dimensional structures [9]. But, even for one-dimensional Frenkel
Kontorova (FK) chains, the interaction between chain and substrate has to
be sufficiently strong, in order to produce finite kinetic friction [34]. Reason-
able parametrizations of the FK model would require the harmonic coupling
between adjacent atoms in the chain, k, to be larger than the maximum cur-
vature, V ′′

max, of the embedding potential [9]. In this regime, FK models are
typically superlubric [34]. Thus, all theoretical considerations point to super-
lubricity between unaligned solids, provided that the interfaces are sufficiently
flat. While more and more systems are found to be superlubric, some exper-
iments find clear violations of superlubricity, although theory predicts these
same systems to be superlubric. One example, is the measurement of friction
anisotropy at Ni(100)/Ni(100) interfaces in ultra high vacuum [65]. When
misoriented by 45◦, friction coefficients remained in the order of 2.5 instead
of becoming unmeasurably small. The simulations by Tangney et al. [66] and
by Qi et al. [67] probably clarify the seeming discrepancy between theory and
simulation.

Tangney et al. [66] studied the friction between an inner and an outer
carbon nanotube. Realistic potentials were used for the interactions within
each nanotube and Lennard Jones potentials were employed to model the dis-
persive interactions between nanotubes. The intra-tube interaction potentials
were varied and for some purposes even increased by a factor of 10 beyond
realistic parametrizations, thus artificially favoring the onset of instabilities
and friction. Two geometries were studied, one in which inner and outer tubes
were commensurate and one in which they were incommensurate.

Let us rewind for a second to discuss the two idealized egg cartons men-
tioned in the beginning of Sect. 2.4. Aligning the two egg cartons explains sta-
tic friction, but, as long as no additional “microscopic” dissipation mechanism
is present, there is no reason why our egg cartons should show static friction.
Whenever the top egg carton slides downwards, kinetic energy is produced
that will help it to climb up the next potential energy maximum. Instabilities
would be required to produce static friction. Thus, the presence of static fric-
tion does not imply kinetic friction. The simulations of the nanotubes exhibit
exactly this behaviour, which is demonstrated in Fig. 15.

In interpreting Fig. 15, it is important to know that the outer tube has
two open endings and that both tubes are equally long. The embedded tube
only has a small fraction inside the outer tube initially. The system will try
to reduce surface energy by sucking the outer tube inside the inner tube. If
there is no friction between the tubes, then the force will be constant un-
til the inner tube starts to exit at the other end at high velocity. When the
nanotube is almost completely exited at the other end, the procedure will
repeat and surface-energy driven oscillations will occur. This is what is found
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Fig. 15. Top: Friction force between two nanotubes as a function of time. Bottom:
Displacement of the nanotubes as a funtion of time. Grey and black lines indicate
incommensurate and commensurate geometries, respectively. From [66]

for the incommensurate tube, except for some small fluctuations in the in-
stantaneous force and some weak viscous-type damping. The commensurate
system behaves slightly different. There are large fluctuations in the instan-
taneous force, which have the periodicity of the lattice. The fluctuations are
particularly large when the inner tube is fully immersed in the outer one. The
fluctuations can be understood within the egg carton model. Moreover, from
the absence of significant dissipation on long time scales, it is possible to con-
clude that no instabilities occur. Thus the simulated, low-dimensional rubbing
system exhibits superlubricity, not only for incommensurate but even for com-
mensurate surfaces. Finite static and zero kinetic friction forces have also been
observed experimentally, albeit for a different system [68]. Although the nan-
otube simulations were based on reasonably realistic potentials, it needs to be
emphasized that real carbon nanotubes have a lot of chemical defects, which
induce the experimentally measured non-viscous type friction forces [69].

It turns out that the detailed microstructrue matters just as much for
three-dimensional systems as for nanotubes. Qi et al. [67] studied atomically
smooth Ni(100)/Ni(100) interfaces. Their idealized geomtries display the same
superlubric behaviour as the idealized copper interfaces studied by Hirano and
Shinjo [4]. However, roughening the top layer with a mere 0.8 Å rms varia-
tion, changes the behaviour completely, with friction coefficients increasing by
several orders of magnitude as can be seen in Fig. 16.
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Fig. 16. Friction coefficient for differently aligned Ni(100)/Ni(100) interfaces.
Rough surfaces have a 0.8 Å rms variation in roughness added to the atomically
smooth surfaces. From [67]

Fig. 17. Snapshots from the simulations leading to the friction coefficients shown
in Fig. 16. From the left to the right: Atomically flat commensurate, atomically
flat incommensurate, rough commensurate, and rough incommensurate geometries.
Only the flat incommensurate surfaces remain undamaged resulting in abnormally
small friction coefficients. From [67]

The microscopic origin of the increase in friction can be understood from
the microstructures shown in Fig. 17. Due to sliding, all contacts deform
plastically except for the atomically flat, incommensurate contact. As the
atoms are no longer elastically coupled to their lattice sites, they can interlock
the surfaces in a way that is roughly akin of the scenario shown in Fig. 2. Of
course, when placing two commensurate, atomically smooth solids on top of
each other, the identity of each of the solids disappears instantaneously, and
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sliding them corresponds to shearing a single crystal, which certainly has finite
resistance to shear. No intervening layer is required in this case to interlock
the surfaces.

4.2 Physics and Chemistry of Lubricant Additives

Most of this chapter evolves around simple models of surfaces and lubricants.
There is a lot we can learn from these generic models, but it is important
to keep in mind that real lubricants are rather complex mixtures. There are
many different chemicals which are added to the so-called base oil of industrial
lubricants used in car engines. These additives function to reduce the forma-
tion of foam, to reduce friction, to disperse debris, to act as anti-oxidants
for nascent surface material, and to reduce wear. The rational formulation
of an industrial lubricant formulation not only requires a knowledge of each
additive, but it is also imperative to understand the interactions between the
additives.

One particular class of anti-wear additives are zinc dialkyldithiophosphates
(ZDDPs), which were invented in the 1930’s as anti-oxidants. Their main func-
tion, however, turned out to be the protection of cast iron surfaces from wear.
Experiments revealed that the ZDDPs decompose into simple zinc phosphates
(ZPs) under the conditions at which the lubricant operates and that these de-
composition products form films or patches of ZPs on surfaces. In what follows,
these patches will be called anti-wear pads (AWP). Although an abundance
of experimental data was available regarding the ZDDPs, no coherent, molec-
ular theory existed that could explain how the AWPs form and function [70].
Relevent experimental observations which must be accounted for by such a
theory include the following: AWPs formed on the tops of asperities are harder
and more elastic than those in the valleys between asperities, the spectra of
the AWPs on the tops of asperities are reminiscent of ZPs with longer chain
lengths, while those in the valleys are characteristic of shorter ZP chains.
Additionally, the ability of the AWPs to inhibit wear is reduced when zinc
is replaced by another charge-balancing cation, such as calcium. Lastly, the
rapid formation of AWPs under sliding conditions and the inability of ZDDPs
to protect aluminum surfaces were not understood.

Previous models for ZP-AWP formation were based on reaction schemes
in which iron atoms acted catalytically in the formation of the pads. It was
believed that the reaction required the high temperatures typically found in
the microscopic points of contact. However, the conditions found in tribolog-
ical contacts are far from ambient and it may therefore not be sufficient to
only incorporate the effect of temperature. In contrast, pressures can be ex-
tremely high, and approach the theoretical yield pressure for a short period
of time. With these considerations in mind, it is natural to ask, how the lubri-
cant molecules respond to the extreme conditions encountered in tribological
contacts.
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Mosey et al. [71] addressed this question by exposing the relevant decompo-
sition products of ZDDPs to pressures close to the theoretical yield strengths
of steel and aluminium, respectively. Configurations from these simulations
before, during, and after compression are shown in Fig. 18. It is found that

Fig. 18. Molecular configuration of triphosphates (TPs) (a)–(c) and zinc phos-
phates (ZPs) (d)–(f). The graphs (a) and (d) correspond to an initial low-pressure
structure. The graphs (b) and (e) show configurations at high pressure, in which both
TPs and ZPs form covalent cross links. After pressure is released back to ambient
pressures, (c) and (f), only the ZPs remain a chemically connected network

high pressure is a sufficient condition to form chemically connected networks.
However, these networks only remain intact under decompression if zinc is
present as a crosslink-forming agent. The formation of the cross-links occurs
through changes in the coordination at the zinc atom. Since calcium does not
exhibit a variable coordination, replacing zinc with that atom decreases the
degree to which cross-linking occurs, thereby reducing the ability of the film to
inhibit wear. From the simulations one may conclude that the degree of chem-
ical connectivity is particularly large, when the pressure to which the ZPs are
exposed are very high. Moreover, it was found that the chemically cross-linked
ZPs are much harder after the compression than before. Lastly, the formed
pads are harder than aluminium surfaces suggesting that they cannot effec-
tively redistribute pressures on aluminium surfaces and instead abdrade them.
All these conclusions are in correspondance to the experimental observations.

More importantly, the simulations provide guidelines with which to screen
for replacements of the environmentally problematic ZDDPs. One needs to
identify molecules that can enter the microscopic points of contact as a
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viscous fluid and that crosslink through the application of the typically en-
countered pressure and temperature conditions. (Temperature appeared to
play a negligible role in the simulations.) The resulting cross-linked AWPs
should be softer, but not much softer, than the substrate so that the AWPs
can redistribute the pressure exerted and thereby alleviate the extreme con-
ditions to which the asperities are exposed. This example is only one of many
which show that simulations bear the potential to not only address questions
of fundamental scientific interest, but also guide in the design of new materials.
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3. M. H. Müser, M. Urbakh, and M. O. Robbins (2003) Statistical mechanics of
static and low-velocity kinetic friction. Adv. Chem. Phys. 126, pp. 187–272

4. M. Hirano and K. Shinjo (1990) Atomistic locking and friction. Phys. Rev. B
41, pp. 11837–11851

5. K. Shinjo and M. Hirano (1993) Dynamics of friction - superlubric state Surf.
Sci. 283, pp. 473–478

6. L. Prandtl (1928) Ein Gedankenmodell zur kinetischen Theorie der festen
Körper. Z. Angew. Math. Mech. 8, pp. 85–106

7. G. A. Tomlinson (1929) A molecular theory of friction. Philos. Mag. Series 7,
pp. 905–939

8. T. Baumberger and C. Caroli (1990) Dry friction dynamics at low velocities.
Comments Cond. Mater. Phys. 62, p. 251
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