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Abstract. The microscopic structure of a crystal and thermal fluctuations of the
atoms constituting the crystal are intimately connected with the macroscopic elastic
properties including mechanical stability. In some cases, however, the picture is more
complex than that which is drawn in text books on solid state physics. (i) The in-
stantaneous microscopic structure can deviate in a non-Gaussian way from the average
structure even when domain disorder and/or crystal defects are absent. Quasi har-
monic approximations may then turn out to be meaningless. (ii) The crystal is subject
to external pressures that are sufficiently large in order to render the definition of elastic
constants non unique. These two points are discussed exemplarily in the context of the
high-temperature and the high-pressure phases of quartz. In particular, it is discussed
how to observe and how to classify non-Gaussian disorder in molecular dynamics (MD)
simulations and how to evaluate mechanical stability of solids under pressure. Some
details are given on the calculation of thermal, mechanical, and structural properties
of solids, also for temperatures far below their Debye temperature.

1 Introduction

Pure silica (SiO2) has a rich phase diagram with interesting temperature and
pressure induced phase transitions between the various stable or metastable
polymorphs[Dolino 1990], [Heaney, Prewitt, and Gibbs 1994]. The large variety
of crystalline phases is due to the tetrahedral structure of relatively rigid SiO4
units and the large geometric flexibility with which they can be connected. The
material properties in general and the mechanisms driving the phase transition
in particular are often explained in terms of their average structure and (Gaus-
sian) fluctuations around this average structure. Detailed molecular dynamics
simulations reveal that the picture needs to be refined [Miiser and Binder 2001]:
In the high-temperature phases, e.g., in S-quartz, the fast oscillations of oxy-
gen atoms are around (time-dependent) positions that do not correspond to the
ideal oxygen positions in # quartz. The averaged configurations only resemble
the ideal structure if averaged over time scales that are distinctly larger than
typical inverse phonon frequencies. This effect has serious implications on the
calculation of material properties: The calculation of elastic constants as evalu-
ated in terms of a quasi-harmonic approximation turns out to be meaningless.



Another controversially discussed phase transition of quartz is the pressure-
induced transformation of a-quartz into quartz-II [Kingma et al. 1993]. Based
on a mechanical stability analysis by means of molecular dynamics (MD) sim-
ulations, Binggeli and Chelikowsky (1992) suggested that the transformation is
induced by an elastic instability. The MD predictions were in contradiction with
an experimental mechanical stability analysis by Gregoryanz et al. (2000). The
discrepancy between simulation and experiment may not be due to poor MD
modeling but it may rather be due to the ambiguity in defining elastic constants
for solids under large pressure [Miiser and Schoffel 2001). Of course, the correct
stability criterion must require that the long-range structural fluctuations are
finite.

In these lecture notes, a selective review on MD simulations of various quartz
modifications and the phase transformations between them is given. In partic-
ular, it is emphasized what a computer simulation should provide in order to
be compared to experiments and in order to make predictions that complement
reliably experimental observations. The potential energy surfaces suggested by
van Beest, Kramer, and van Santen (1990) is used as their two-body potential
turned out to describe rather accurately various aspects of silica in different
crystalline phases [Tse and Klug 1991].

2 Molecular Dynamics Simulations of Crystals

The code for a molecular dynamics (MD) simulation [Allen and Tildesley 1987],
[Frenkel and Smit 1996] or a Monte Carlo (MC) [Landau and Binder 2000] sim-
ulation of a crystal is of course similar to that of any system which is described
in terms of effective or ab initio-based interatomic potentials. In principle, the
starting point is a Lagrangian L
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where m,, denotes the mass of particle n and V({R}) is the net potential energy
as a function of the coordinates of all N particles. The well-known Newton
equation’s of motion for the particles are derived from L. These equations are
integrated numerically, stepping forward in time by discrete steps of size At. To
thermostat the system, the equations of motion are modified so that the average
kinetic energy stays at its equilibrium value. There are various approaches to
achieve this. An efficient way that also works without modifications for strongly
harmonic systems (note that the famous Nose-Hoover thermostat suffers from
serious difficulties for such systems!) is to couple each atom to its own local
thermostat [Schneider and Stoll 1978]. The exchange of energy with the outside
world is modeled by a Langevin equation that includes a damping coefficient
~ and a random force I';,(¢) on each atom. The equations of motion for the a



component of the position R,, become:
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In order to satisfy the fluctuation-dissipation theorem, the Ty, (t) must be com-
pletely random, have zero mean, and have a second moment given by
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Note that Eq. (3) is written down for a discretized time.

While the remarks above are generally valid, there are two important points
that are usually more relevant for crystals than for fluids or other disordered
systems. (i) The crystal structure may not be conform with a periodically re-
peated simulation box of orthorhombic symmetry. This makes it necessary to
employ arbitrary parallelepiped shaped simulation boxes. Such geometries also
enable us to calculate all elastic constants from thermal strain fluctuations. (ii)
Quantum effects typically play a more significant roles in crystals than in fluids,
although fluid helium is a prominent exception of this rule. Ways to incorporate
these two points into MD simulations will now be discussed in further detail.

2.1 MD for arbitrary parallelepiped simulation cells

The simulation of crystals in an arbitrarily parallelepiped shaped simulation cell
goes back to an idea invoked by a series of papers by Parrinello and Rahman
(1980, 1981, and 1982): The atomic positions are represented as a scalar product
of a dimensionless vector r (with components between zero and unity) with a
(symmetric!) matrix h whose rows are parallel to the three edges spanning the
simulation cell:
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The Lagrangian described in Eq. (1) is then generalized by also attributing
inertia to the simulation cell’s geometry and by coupling the simulation cell’s
volume det(h) to an isotropic pressure p:
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Note that the original Lagrangian is recuperated by setting h to zero and that
the choice of the inertia term W is not unique, because this term can not be
determined from first principles. While the choice of W affects the dynamics of
the system, it does not affect the distribution functions of h and {r}.



Using the Lagrangian formalism, the equations of motion for h and {r} can
be derived in a straightforward way. It is convenient to thermostate all variables
in order to have quickly converging ensemble averages. The choice of a Langevin
type thermostat for h is particularly helpful as these modes are usually strongly
harmonic and hence couple only weakly to the inner degrees of freedom {r}.

In order to define the strain tensor €, we need to know the thermal expectation
value hg = (h). € is given by
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Thus by monitoring the various moments of h in the simulation, it is possible to
calculate the first and the second moment of the thermal strain fluctuations de
from which the (isothermal) elastic constants C'T s follow via:
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If this fluctuation relation is applied to non-zero pressures, then the Cqg,5 cor-
respond to Birch coefficients rather than to elastic constants. This point will be
further elucidated in Section 5. In any case, Eq. (7) is a manifestation of the
connection between structure fluctuations and elastic properties.

2.2 MD below the Debye temperature

Path integral Monte Carlo (PIMC) [Barker 1979] and path integral molecular
dynamics (PIMD) [Tuckerman et al. 1993] have proven useful in the atomistic
simulation of quantum effects occurring in condensed matter at low temperatures
(see also the article by Gernoth in these Lecture Notes). The application of path
integral simulations is not restricted anymore to the calculation of thermal and
structural properties of Lennard-Jones type systems but the treatment of more
complex condensed matter systems becomes increasingly feasible.

In order to derive the path-integral scheme for a system with fluctuating sim-
ulation cell size, it is convenient to start from the Lagrangian given in Eq. (5).
One should not quantize the tensor h, because in the long-wavelength limit this
quantity becomes always classical and because the choice of the inertia W is ar-
bitrary. Thus the quantization of the variables r,, can be achieved as usual. Path
integral simulations exploit Feynman’s idea to represent the partition function
of a quantum mechanical point particle Z(f) as a partition function of a classical
ring polymer [Feynman and Hibbs 1965]. The position of a quantum mechanical
point particle is represented by a chain with coordinates r; with t =1, ..., P and
cyclic boundary conditions ry = ryyp. In the present notation, the partition
function reads:
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where the relation between r,, and large R, is given as usual by Eq. (4). V
represents the (real) potential energy of the system evaluated for particle coor-
dinates at “imaginary time” ¢ and the last summand of the right-hand side of
Eq. (9) reflects the harmonic springs that keeps monomer of the ring polymer
close together. It is instructive to visualize the interactions described in Eq. (9),
which is done in Figure 1.
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Figure 1: Tllustration of the interaction between two quantum mechanical point
particles that are represented as classical ring polymers.

The spring constants k, connecting neighboring beads within a chain are
given by k, = m,P?/ (2h2. Hence large temperatures and/or large masses
lead to a localization of the ring particle and thus to classical behaviour. The
spatial extension of the chains at low temperatures reflects the thermal de Broglie
wavelength.

In the quantum limit P — oo, the k,, become very stiff. This would lead to
technical difficulties in a PIMD simulation if the “kinetic” masses of the beads
were all chosen to be identical, because there would be a time scale separation
between the center-of-mass mode and the internal modes. This effect would
automatically result in an inefficient sampling, which is why one needs to come
up with more efficient algorithm [Tuckerman et al. 1993]. One possibility is to
attribute the inert masses (note that the real, physically meaningful masses are
reflected in the harmonic springs) to the eigenmodes of the free chain and to chose
them such that internal eigenfrequencies and typical frequencies associated with
the center-of-mass motions are similar [Miiser 2001]. For a proper choice of these
masses including W and a proper choice for the Langevin damping coefficient
v, it is possible to obtain quickly converging estimates of many thermal and
structural properties including the elastic constants.



3 Quantum effects in a-quartz

Many potential energy surfaces are adjusted such that they yield the proper
lattice constants (parameters) and the correct elastic properties at low temper-
atures. This is also the case for the so-called BKS potential suggested for SiO»
by van Beest, Kramer, and van Santen (1990). It is therefore an important test
for a model potential surface to yield the correct thermal expansion at low tem-
perature, because the anharmonic interactions are not explicitly incorporated
into the potential parameters. Such a test requires a quantum mechanical treat-
ment of the ionic motion, since classical expansion coefficients a remain finite
as the temperature T tends to zero, while for a quantum mechanical treatment
- like in experiment - « vanishes as T' approaches zero. Despite the existence
of sophisticated quasi-harmonic theories, it remains a challenge to predict reli-
ably lattice parameters near absolute zero. Path integral simulations like PIMD,
however, achieve very good resolution down to temperatures well below the De-
bye temperature Tp without any uncontrolled approximations other than the
uncertainties due to the potential energy surface. Of course, these uncertainties
would also be present in theoretical treatments.

Quartz has two independent lattice constants, a and ¢, with a and ¢ repre-
senting the lattice parameters parallel to the z and z-direction respectively (in
the standard representation). It turns out that thermal expansion is very well
reproduced by the BKS potential at very low temperatures as can be seen in
Figure 2, while classical simulations show the wrong trend at small T'.
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Figure 2: Lattice constants of a-quartz at ambient pressure as a function of

temperature. a) Experimental values for the a-axis are shifted to larger values

by 0.06 A. b) Experimental values for the c-axis are shifted to larger values by

0.07 A. Error bars of simulations in all cases smaller than 100 fm. Experiment

taken from Carpenter et al. (1998). From Miiser (2001).

Some numerical approaches (like density functional theory or other quan-
tum chemistry approaches) reach a nearly perfect agreement with experiment,



especially for structural properties. In general, such calculations do not include
quantum effects of the ionic motion. As we just saw, quantum effects lead to an
equilibrium structure that slightly differs from the “classical” equilibrium struc-
ture. From Figure 2 we can learn that a highly accurate calculation should ac-
tually underestimate the experimentally measured lattice parameters for quartz
near absolute zero by about 0.35 %. Of course, finite-temperature simulations
also provide important tests, i.e., one observes a discrepancy in the a- phase
transition temperature of nearly 100 K and more importantly, the jump in the
lattice parameter a is strongly suppressed in the simulation. These shortcomings
are discussed elsewhere [Miiser and Binder 2001].

A further phenomenon which needs quantum effects of the ionic motion to
be considered are the well known isotope effects. E.g., for rare gas crystals
such as 2°Ne and 2?Ne systematic differences between the lattice parameters
were measured. The differences were rather nicely reproduced by path integral
Monte Carlo simulations [Miiser et al. 1995]. However, isotope effects will not
be discussed here further.

The analysis of the influence of quantum mechanical effects is not limited
to structural or thermal properties. With current computers and algorithms,
it has also become possible to estimate elastic constants quite accurately, see
i.e. the treatment of solid *He by Schéffel and Miiser (2001). It seems a general
trend that the relative corrections due to the quantum mechanical nature of ionic
motion to cohesion energies (near T' = 0 K) is larger than those to the lattice
parameters and that the relative corrections to elastic constants is again larger
than but in the same order as those to the cohesion energy. In a-quartz, the
quantum induced reduction in the elastic constant C33 was estimated to be close
to 5 GPa, which seems surprisingly large given the strong ionic-covalent bond
in quartz and the relatively large masses of the constituting atoms. Figure 3
shows the elastic constants of a-quartz for a classical treatment, the quantum
mechanical treatment along with some available experimental data.

Although this is hardly recognizable from the figure (because of the large
scale needed for the ordinate), the temperature dependence of elastic constants
calculated classically is qualitatively wrong: classical statistical mechanics al-
ways yields 0C;; /0T — const. as T — 0 and this constant will in general be
nonzero. Quantum mechanics requires 9C;; /0T — 0 as T — 0 due to the third
law of thermodynamics.

From Figure 3 it is noticeable that the elastic constants measured experimen-
tally at 300 K match the elastic constants from the classical simulations at zero
temperature. This is due to the fact that the BKS potential was constructed such
that ab-initio calculations were combined with bulk properties in order to fit the
free model parameters. In the latter part, lattice constants and elastic constants
were calculated for a classical system at T = 0 K from the (fit) parameters and
adjusted such that agreement with experimental “quantum mechanical” (finite
temperatures) data was optimum. While I consider the BKS potential to be the
best two-body potential available for the simulation of bulk SiO,, one can see
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Figure 3: Various elastic constants. Experimental data shown as curves is taken
from Carpenter et al. (1998). Open symbols refer to classical simulations, filled
symbols to PIMD simulations. Statistical error bars are about 2 GPa. From
Miiser (2001).

that there is still some room left for improvement of the potential parameters.

It is interesting to note that Tp of a-quartz as determined by specific heat
measurements [Striefler and Barsch 1975] is a strongly temperature-dependent
function: At T =0, Tp =~ 550 K, while at room temperature Tp ~ 1,000 K. This
unusual behaviour can be understood if one keeps in mind the relevant degrees
of freedom: There are low-lying excitations associated with so-called rigid unit
modes (RUM) [Axe and Shirane 1970]. The RUM’s are (collective) motions of
stiff tetrahedral SiO4 units invoking bending of the SiOSi bonds. As a matter of
fact, it is possible to find support for this picture by simply comparing classical
and quantum mechanical distribution functions of the SiO bond length and the
SiOSi and OSiO bond angle distribution at room temperature, which is done
in Figure 4. The quantum mechanical Si-O bond length deviates considerably
from the classical bond length distribution, while the bending of both SiOSi and
0OSi0 angle is still classical, i.e. low-energetic. The bending modes start freezing
quantum mechanically at temperatures near 200 K, while the SiO bond length
distribution remains essentially unaltered upon further cooling. Particularly
strong quantum effects in distributions p(r) or p(a) such as shown in Fig. 4 are
found in cases where the crystal contains very light atoms, e.g. orthorhombic
polyethylene C,Hap 4o [Martonak et al. 1998].



50 classical B 012  (b) i
| ———- quantum | classical
_ a0 L i ———- quantum
<< . 0.08 .
30 - 4 & 7\
o A
=) I
o 20 - -
0.04 b
10 - 1 \
/ \
/ \
/ \
0 I = . | . -~ — | N
1.4 15 1.6 1.7 1.8 150
r Al a

Figure 4: a) Probability density p(r) to find an oxygen atom in a distance r
from a silicon atom. b) O-Si-O (left) and Si-O-Si (right) bond angle distribution
function p(a). Solid lines reflect classical simulations, dashed lines represent
quantum mechanical simulations. Temperature 7' = 300 K. From Miiser (2001).

4 The structure of S-quartz

The average structure of 8 quartz is hexagonal and the symmetry class is P622.
However, the local structure is known to deviate considerably from the average
structure and the nature of this deviation has been a subject of long debate.
It was frequently discussed in reference to the nature of the a-8 transition in
quartz [Dolino 1990, Heaney, Prewitt, and Gibbs 1994, Carpenter et al. 1998].
The main issue is whether or not oxygen atoms oscillate around positions that
correspond to locations on which oxygen atoms can be found in a quartz, so-
called a; and «y positions. If § quartz consisted of small «; and as domains
(each occuring with the same probability), then the averaged structure would
still be that of § quartz. Alternatively, one may envision a situation where the
atoms oscillate around their § positions in such a way that the short-range order
differs from that in a-quartz. Evidence for this was found by Kihara (1990), who
suggested librational motion of the oxygen atoms around the Si-Si lines leading
to non Gaussian atomic distribution functions.

In the following discussion, I will mostly disregard the intermediate incom-
mensurate phase, which has been observed in a relatively small temperature
range of 1.5 K [Dolino 1990] between the regions where a and § quartz are ther-
modynamically stable, respectively. The wavelength of the incommensurate soft
mode exceeds the feasible linear dimension of our current atomistic simulation
by more than an order of magnitude. Hence if we were to maintain the shape
of our simulation box, we would have to deal with system sizes more than three
orders of magnitude larger than those that are currently employed. Going to
such large system sizes would be barely feasible at the present time on a clus-



ter containing a few workstations even with further simplifications of the model
and optimization of the algorithm (replace Ewald sums with algorithms that are
preferential for summing up Coulombic interactions of extremely large systems).
One might argue that it could be sufficient to extend the size of the simulation
cell parallel to the soft mode vector. However, this could change the effective di-
mensionality of our solid, which is likely to invoke a qualitatively different phase
transition scenario. Note that studying relatively small systems of a few thou-
sands of atoms is not necessarily a disadvantage. It has been argued that the
a-f transition is first order due to the existence of the incommensurate phase in
between the two phases. Our system sizes are too small to be affected by this
intermediate phase, however, they are still large enough to determine the order
of the transition via finite-size scaling.

I will first be concerned with a discussion of how to quantify and to observe
the non-Gaussian behaviour of # quartz in atomistic computer simulations. One
may expect that the behaviour is rather generic for network formers with tetra-
hedral short-range order and displacive phase transition between high symmetry
(i.e. B-quartz) and low symmetry (i.e. a-quartz) phases. We will then explore
the consequences that non-Gaussian behaviour has for quasi harmonic treat-
ments. This will be done in Section 4.3. The relation of the local order in
B-quartz with respect to that in a-quartz will be discussed in detail in Sec-
tion 4.3.

4.1 Non-Gaussian disorder in S-quartz

Let us first discuss the information that is accessible to an experimentalist and
explore possibilities how computer simulations can retrieve similar data or even
go beyond. The key quantity in structure determination by elastic scattering
(neutron or X-ray) is the scattering intensity I(q)

I(q) =) _ bib; (exp {iq (R; — R;)}), (10)
j
with q the momentum transfer of the scattered neutron, b; the cross section
of atom i, and R; its position in space. (...) denotes a temporal average over
a sample in thermal equilibrium. If the coupling between different vibrational
modes in the crystal is weak, Eq. (10) can be simplified to

I(q) = Lidea(q)S(q), (11)

where [igea1(q) is the scattering intensity for the ideal structure (or average
structure) and S(q) is a weight factor, also known as Debye Waller factor, that
depends on the amount of vibrational or structural disorder in the system. Un-
like experiment, computer simulations can determine Ligea1(q) by first averaging
the configurations over many time steps and then performing the scattering, i.e.,
the brackets (...) are pulled into the argument of the exponential. Of course this
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procedure is limited to time scales in which atomic diffusion within the solid
can be neglected. Since in most solids the diffusive mechanisms take place on
time scales distinctly larger than those accessible in molecular dynamics simula-
tions, this effect can usually be neglected. Exceptions to this rule are quantum
solids like crystalline helium and crystals near a (non-displacive) phase transi-
tion. In both cases significant diffusion can take place on the time scale of a MD
simulation.

The dependence of S(q) on g (the absolute value of q) can be easily discussed
in a one-dimensional system. This is done in Fig. 5 where the effect of phonons
(Gaussian atomic distribution functions around the ideal positions) and disorder
on the S (q) is analyzed. The reader might consult standard solid state physics
books in order to confirm the validity of the equations stated in that figure or
derive them by using Eq. (10) and by decomposing the vibrations into harmonic
eigenmodes. The main result for vibrational disorder is that the intensity of I(q)
is the product of the ideal scattering intensity Ligeal(g) times a weight function
that falls off exponentially fast with the square of the scattered wave vector q,
while oscillation in I(q) are indicative of structural disorder. Of course, the last
row in Fig. 5 is highly idealized, because the atoms will oscillate around the split
positions and because real crystals are not one-dimensional.
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Figure 5: Schematic representation of the density distribution p(z) in real space
(left) and elastic scattering intensity I(q) (right) for a one-dimensional one-
component system. The top row represents the ideal/average structure, the
middle row a phonon broadened structure, and the bottom row shows a dis-
ordered structure in which one (split) atom occupies randomly one out of two

equivalent positions that are separated by Aa.

The qualitative discussion in Fig. 5 is also valid for solids with basis, i.e.
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two-component systems like quartz. In order to generalize the analysis of how
I (q) depends on the inverse neutron wavelength q, it is convenient to introduce
the polarization vector u,,,(Q) of the normal mode (Q,«). The number of
independent polarization vectors in a unit cell depends on the crystal symmetry.

In a computer simulation, we can restrict the evaluation of the scattering
intensities, see Eq. (10), to pairs of atoms, which all have the same polarization
vector U, (Q) and u,4(Q), respectively. This enables us to define a generalized
scattering intensities or generalized Debye-Waller factor I, (q):

Inn(q) = exp { =¢* ) {Inqma(Q)] [n7u;,,(Q)]) ¢ - (12)
Qo

While this generalized Debye-Waller factor is directly accessible in simulations,
experimental determination of that quantity requires fitting and a priori as-
sumptions on the atomic distributions. The I,,,,(q) have the important feature
that they fall off according to I « e as long as the harmonic approximation
is valid. The prefactor a in the exponential depends of course on the director
ng of q. The property I o« €2” is lost if the sum in Eq. (10) is evaluated over all
atoms. The following example, see Fig. 6, shows how the calculation of I,,,’s
can contribute to the determination of the local structure in 8 quartz.
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Figure 6: a) Snapshot of § quartz at T = 1000 K in the zz plane. z is horizontal.
Ocher and grey colored atoms reflect Si atoms, red and blue show O atoms.
b) Same as a) but for zy plane. c)-e) Generalized scattering intensities (ideal

structure, real structure, and fits) as a function of ¢ with n, parallel to z axis.
Colors are consistent with a) and b). The background in I(g) [small circles in
c)-e)] including the plateau value for large ¢ becomes smaller with increasing

system size. f) Observed scattering intensities I(q) divided by fit values Ig(q)-
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In Fig. 6, the (generalized) scattering intensities of the ideal sturcture (i.e.
the structure averaged over a few 10,000 MD steps), the averaged scattering
intensities I,,,,,, and fits are shown. The fits include an adjustable offset that
is added to the Gaussian, i.e. I = e~ 4 const. Only those q vectors are
incorporated in the fit that correspond to “allowed” lattice vectors. The offset
was observed to vanish with inverse particle number. The background at the
symmetry forbidden g can be understood from the fact that the simulations
were done in the isothermal-isobaric ensemble. One can see in Fig. 6 that the
generalized scattering intensities I, (q) are quite well described by the har-
monic approximation if m denotes one of the two equivalent Si atoms. (The Si
atoms are equivalent in the sense that they have the same polarization vector
for an eigenmode Q,«.) The oxygen atoms show much larger deviations from
harmonic behaviour than the silicon atoms, since the oxygen’s I, (q) can be fit
considerably less well with Gaussians.

The non-Gaussian nature of the vibrations associated with the motion of
oxygen atoms is also illustrated in Fig. 7, where the probability p(r) to find an
atom a distance r away from its average position (with respect to the center of
mass of the simulation box) divided by r? is shown as a function of r. For the Si
atoms, a single Gaussian is obtained, while the O atoms apparently have several
preferred sites, which is obvious from the anomaly in the p(r)/r? curve. These
results strongly support the X-ray study by Kihara (1990) in which the oxygen
distribution functions were conjectured to deviate considerably from Gaussians.
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Figure 7: Left: Probabilty p(r) to find an atom a distance r away from its average

position (with respect to the center of mass of the simulation box) divided by
r? as a function of 7. Circles refer to Si atoms, crosses to O atoms. The straight
line is a Gaussian fit through the Si data. T' = 900 K. Right: Probabilty p(b)
to find an oxygen atom a distance b away from a silicon atom. pS-quartz and
[B-cristobalite simulations were carried out at T' = 1000 K, those for a-quartz at
500 K. The straight lines reflect the location of the Si-O bond lengths as deduced
from the average structure. From Miiser and Binder (2001).

Yet another indication for the fluctuations about the average positions be-
ing anharmonic is obtained from the bond-length distribution function. For
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[B-cristobalite, it has been shown experimentally that the real bond-length dis-
tribution function peaks at a radius that is distinctly larger than the bond-length
deduced from the average structure [Dove et al. 1997]. This effect is less strong
in B-quartz as shown in Fig. 7. Nevertheless it is clear that the tendencies in
[B-cristobalite and S-quartz are similar: The Si-O bond lengths deduced from
the average structures is located at a position that is markedly smaller than the
position where the bond length distribution peaks. The bond-lengths from the
average positions shown in Fig. 7 are deduced from our simulations (see also
Fig. 8). The values we obtain for S-cristobalite agree well with those suggested
by Dove et al. (1997). They state that the bond length of the average posi-
tion is about 1.55 A, while their bond length distribution peaks at 1.61-1.62 A.
There is also qualitative agreement of our simulations with experimental data
on fB-quartz: Kihara (1990) reported a real SiO bond length of 1.62 A, which is
about 0.04 A larger than the spectroscopic bond length of 1.588 A, while our
simulations suggest a change of only 0.02 A. A recent neutron diffraction study
confirms Kihara’s results quite accurately [Tucker et al. 2000].
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Figure 8: a) T'(r) for B-cristobalite as a function of distance r at 573 K. Ex-
periment is represented by a solid line and simulation data is represented by a
dashed line. b) Corresponding radial distribution function g(r) for Si-Si, Si-O,
and O-O bonds. The curves are normalized such that g(r) — 1 for r — oc.
From Rickwardt et al. (2001).

While we are mainly concerned with S-quartz in this chapter, it should not
remained unmentioned that simulations based on the BKS potential yield ex-
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cellent agreement for the instantaneous order in other polymorphs as well, i.e.
B-cristobalite. It is a cubic SiO; polymorph in which the Si are four fold co-
ordinated like in quartz. Information on the instantaneous order can be ob-
tained experimentally by measuring the so-called total pair correlation function
T'(r). This function is a sum of SiSi, SiO, and OO pair correlation function g(r),
whereby each function is weighted with the cross section b of the atoms involved,
hence for SiOa:

T(’I‘) (6.8 bSibSigSiSi(T) + 2b5ib09510 (T‘) + 4bobogSio(7‘). (13)

I refer to Ref. [Dove et al. 1997] for technical details on how to obtain T'(r)
experimentally. Again, the simulations provide a unique way to determine the
individual g(r)’s directly whithout any assumptions on the structure or any
kind of a priori assumptions. The results for T'(r) as obtained for S-cristobalite
are shown in Fig. (8a) while the radial distribution functions are displayd in
Fig. (8b). It is interesting to note that the peak in T'(r) at about 5 A is due to a
simultaneous maximum in go o (r) and gsio(r), while the peak in T'(r) at 6.25 A
does not have a corresponding peak in any g(r). The large local maximum in
T(r) at about 9 A is then located at a position where all g(r)’s have a local
maximum as well. The shape of T'(r) is particularly sensitive to details of the
potentials at large distances, e.g., cutting off the short-range part of the potential
at 4.5 A alters T'(r) significantly for r > 8 A.

4.2 Implications for quasi-harmonic treatments

Here, I want to argue that the seemingly small deviation from harmonic be-
haviour - as seen in the previous subsection - has dramatical consequences for
quasi-harmonic treatments of the high-temperature phase of quartz. Of course,
one may also expect similar difficulties with other high-temperature phases of
network formers with similar tetrahedral short-range order. Quasi-harmonic
approximations are done by expanding the potential energy surface about the
experimentally observed ideal reference structure. From the bond length distri-
bution one can see that this reference structure is not the most likely structure
and hence the outlined expansion risks to fail in providing reliable structural
and elastical properties.

Table 1 contains the list of various structural and elastic properties of «
quartz and f quartz at temperatures 7" = 300 K and 7" = 1000 K, respectively. I
compare experiments with molecular dynamics simulations carried out at finite
temperatures and include data as obtained from harmonic approximations. The
results for the harmonic approximations contain a treatment in which the BKS
potential is used and lattice constants and elastic moduli are evaluated under
the constraints that the silicon atoms remain on ideal S-quartz lattice position.
The oxygen atoms were allowed to move freely, i.e. to relax to their ideal lattice
positions and fluctuate around them. This procedure is strongly related to the
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exper.® | MD®) | BKS (h)© | ab-initioD

a( 300 K) 49014 | 4.967 4,941 4.899
(1000 K) 5000 | 5.031 5.022 5.026
100Aa/a 1.72 1.29 1.62 2.59
(300 K) 5406 | 5.470 5.449 5.383
(1000 K) 5459 | 5.528 5.538 5.512
100Ac/c 0.98 1.06 1.65 2.39

C11(300K) | 086.4 | 087.1 090.5
C11(1000 K) | 132.2 140.6 266.0
AC11/C11 0.53 0.61 1.96
Cs3( 300 K) 103.9 101.2 107.0
C33(1000 K) | 1214 | 127.5 227.0

AC33/C33 0.17 0.26 1.12

Bo( 300 K) 038.1 036.3 040.5 035.4
By(1000 K) 070.2 079.8 164.0 132.6
ABy/By 0.84 1.20 3.10 3.75

Table 1: Lattice constants ¢ and ¢ in a quartz (T' = 300 K) and S-quartz
(T = 1000 K), along with some representative elastic moduli. Differences be-
tween values of a, ¢, or C;; between the a and the 3 phase are inserted as well.
(@) Carpenter et al. (1998) (experiments), (°) Miiser and Binder (2001) (finite
T simulations), (°) van Beest, Kramer, and van Santen (1990) (in harmonic ap-
proximation, data for T = 1000 K unpublished results from present author),
(4) Demuth et al. (1999) (local density approximation, harmonic approxima-
tion).

way in which the elastic constants (and lattice parameters) are obtained in a
local density approximation (LDA) calculation by Demuth et al. (1999) whose
results are inserted as well for comparison.

It can be seen that structural parameters and elastic constants are in good
agreement for the low-temperature phase in all cases. This speaks in favor for
both the BKS potential and the LDA calculation by Demuth et al. In the
high-temperature phase, however, only the molecular dynamics simulations that
implicitly include the non-Gaussian lattice deformations agree satisfactorily with
experiment while both harmonic treatments predict a bulk modulus which is
about a factor two too large. Unfortunately no data was provided by Demuth
et al. (1999) on other elastic properties. The disagreement between harmonic
treatments and experiment is even worse if one looks at the difference between
high and low temperature phases.

Since the BKS potential agrees well with experiment when all thermal fluctu-
ation are taken into account via MD simulations and the trend in the harmonic
approximation of BKS and ab initio are similar, it seems that Demuth et al.’s
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LDA treatment is quite reasonable and one should acknowledge the fact that
these data were made public, albeit the discrepancy between calculations and
experiments were pointed out by the authors themselves.

Yet, the message to be learned is that elastic properties and changes in the
lattice parameters can not be obtained from regular ab initio calculations in
a high-temperature polymorph if the atomic probability distribution functions
deviate from Gaussians in a way is similar to the deviation seen in S-quartz. Of
course Car-Parrinello type simulations allow the determination of all these prop-
erties provided that the simulations cells are sufficiently large and the statistics
sufficiently good. In the present case, we needed a few 10,000 MD steps and a lit-
tle less than thousand atoms in order to get elastic constants with an accuracy of
about 5 percent accuracy.) While elastic constants can be evaluated much faster
in the NVT ensemble than in the NpT ensemble at small temperatures, this
statement becomes incorrect in the high-temperature phase, because the thermal
fluctuation corrections are in the order of the harmonic constants evaluated in
the harmonic approximation. Since time steps are considerably smaller in Car-
Parrinello simulations and since each individual time step is much more CPU
time expensive, it seems that classical (or path integral) molecular dynamics are
the only reliable route to do these calculation for the next few years.

4.3 Nature of the a-3 phase transition

In the previous discussion, we have only learned that the disorder is non-Gaussian,
but nothing has been said to the nature of the disorder. If S-quartz consisted of
a1 and ap domains, which spatially and dynamically averaged to the idealized
[B-quartz structure, then the phase transformation could be expected to be an
order-disorder transition. Neutron diffraction [Wright and Lehman 1981], NMR
studies [Spearing et al. 1992], and molecular-dynamics simulations [Tsuneyuki
et al. 1990] were interpreted as evidence for this scenario. The majority of recent
studies, however, favors a displacive type of phase transformation. In this case,
the actual structure of the high-temperature phase is interpreted as an ideal (-
quartz structure, which is distorted by rigid unit modes of relatively stiff tetrahe-
dral SiO4 units. This point of view explains the existence of soft modes in the o
and 8 phases [Axe and Shirane 1970, Tezuka et al. 1991, Carpenter et al. 1998,
Dove et al. 1999] and the absence of symmetry forbidden phonons in the S-phase
of quartz [Salje et al. 1992]. The non Gaussian behaviour observed by Kihara
(1990) mentioned above favored an ordered structure. The non Gaussian be-
haviour was not interpreted as disorder but as librational motion of the oxygen
atoms around the Si-Si lines.

In order to gain insight into the local structure, it is convenient to calculate
radial distribution functions gsisi(r), gsio(r), and goo(r). As mentioned above,
all these three radial distribution functions can be obtained individually in a
straightforward way and with very good accuracy, and thus complement exper-
iments where this information is not easily available. The g(r)’s are shown in
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Fig. 9 a little more than 100 K above and below “our” phase transition temper-
ature of Ty, = 740K £ 5K. (The determination of T, will be outlined below.) It
can be seen that most features are similar in the two phases even for relatively
large distances r. This raises the question whether or not one can interpret the
g(r)’s as measured in B-quartz as a mere temperature broadened version of the
a-quartz configuration. If this was the case the picture of the domain disorder
in f-quartz would be supported. If it is possible to find qualitative features in
g(r) in B quartz that are not akin of those in & quartz (in particular for small
r), then the domain picture can be ruled out.
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Figure 9: Radial distribution functions for 3.54 < r < 10.0 A at temperatures
(a) T = 875 K (a-quartz) and (b) T' = 625 K (S-quartz). From Miiser and
Binder (2001).

In order to investigate this issue in more detail, it is best to calculate the
various g(r)’s at a temperature where both phases are thermodynamically stable
or at least metastable, i.e. in the immediate vicinity of T;,. It turns out that all
g(r)’s evolve rather smoothly in either phase, however, there is a sudden change
by going from the a phase to the 8 phase. This behaviour is illustrated in
Fig. 10 for selected areas of various g(r)’s. The configurations in Fig. 10 at T =
750 K have been equilibrated for 3000 MD steps before the radial distribution
functions were averaged over 2000 MD steps. The initial configurations were
equilibrated configurations from 25 K below or above 750 K. Smaller systems,
e.g., N = 1080 systems relax considerably at 7' = 750 K within the above
mentioned equilibration time period. One 8 quartz configuration was quenched
down to T = 10 K in order to find the inherent structure of a typical -quartz
configuration. Quenching is done by suddenly dropping the temperature and
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chosing much larger couplings to the thermostat than usual.

Fig. 10 reveals that the local structures in S-quartz can certainly not be
interpreted as (temperature) broadened a-quartz domains, e.g., there are clear
double peaks in gsig; at 7 &~ 5.6 A and gsio at r = 6.25 Ain the a phase that
are absent in the 8 phase. The various g(r)’s do not change significantly with
temperature above Tt,, but make sudden changes near and below Tt,. The (dou-
ble) peaks in g(r) become increasingly more pronounced as the temperature is
lowered further below Ti,. This is furthermore supported by the striking obser-
vation that no double peak in the SiSi radial distribution function is observed
when T = 750 K configurations are quenched down to T' = 10 K (Fig. 10d).
These findings support an experimental study by Tucker et al. (2000), who de-
duced the nearest-neighbor Si-Si-Si angle distribution from the so-called total
pair correlation function T'(r). They found that two peaks of the Si-Si-Si angle
distribution coalesced upon heating at the a — 8 phase transition.

14 - B
r 15 B
1.2 B
l -
=08 4= 1r )
=06 T=15K 17 o T = 750 K (cooling) X
0 T =750 K (cooling) = ! 3
0.4 « T =750 K (heating) 0.5 x T = 750 K (heating)
o To725K ———- T=725K
0.2 -
L L L O L L
5.2 5.4 5.6 5.8 6 5.5 6 6.5 7
/A r/A
T T T T T T 4 T T T T T T
14 - q 35 | xT=80K (thermal equilibrium)
r 1 "~ | oT=10K (quenched from 775 K)
3+ x B
s " ©) 1
€ 2 : ]
> [ 0O *
L 0. i
o T =750 K (cooling) 1 15 L 0° ]
04 F x T = 750 K (heating) R 1L x x o0 © N
i ---- T=725K ] o 500 ox
02 1 05 ©co0 § R
O L L L L L L L L L L L 0 \X 1 L X1 @ L L Q
3.4 3.6 3.8 4 4.2 44 4.6 5.2 5.4 5.6 5.8 6
/A rIA

Figure 10: Details of the radial distribution function Si-Si (a), Si-O (b), and
0-0 (c) for system size N = 4320 at various temperatures. (d) is same as (a),

but from configurations that have been quenched from high temperature phase
to 10 K.
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In order to analyze the «a-f transition in more detail, it is instructive to
visualize the changes of the structure in quartz. This is done in Fig. 11, where a
snapshot along the [100] axis is taken for a-quartz at T' = 80 K and for 8-quartz
at T = 1050 K. The rotation of tetrahedra about the [100] axis can be seen
particularly well for the positions that are equivalent to those sites marked by
an arrow. In the S-quartz phase, no a; or as domains become apparent. This
statement also holds for most configurations obtained near but above Ti.. For
large system sizes near Tt,, it is actually possible to observe jumps of the entire
system between configurations that entirely resemble the a-quartz structure and
those that resemble S-quartz.

Figure 11: View along the [100] axis in a-quartz at T' = 80 K (left) and 8-quartz
at T'= 1050 K (right). Dark and light atoms represent oxygen and silicon atoms
respectively. Both snapshots belong to identical subvolumes of the simulation
cell. The [001] axis goes from the left to the right. The rotation angles about the
[100] axis of the units marked by an arrow is used to define the order parameter.
From Miiser and Binder (2001).

In order to obtain information about the order in the system, a global order
parameter ¢ is defined that measures the rotation of (distorted) tetrahedra about
the [100] axis, such that

1 &
6= D P (14)
ir=1
where the sum over 7* is confined to sites which are equivalent to the sites marked
by an arrow in Fig. 11. ¢} denotes the (averaged) deviation of the orientation
in the y-z plane of the (four) Si-O bond(s) from the value in the ideal S-quartz
structure.

The sudden structural change in the local structure indicates that the tran-
sition is of first order. Yet a proper finite-size scaling analysis has to be done in
order to make this sure [Binder and Stauffer 1987]. Such a study could address
the speculation whether the first-order nature of the transition merely arises due
to the incommensurate instability that occurs at a temperature which is 1.5 K
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higher than the transition into the o phase. As argued above the incommen-
surate phase will be strongly suppressed in simulations owing to the large gap
between the linear box dimension in our simulation and the length of the wave
length of the incommensurate mode.

It is difficult to locate T, precisely by just calculating the expectation value of
the (absolute value) of @, because all thermodynamic properties behave smoothly
for finite-size systems near the phase transition temperature. In order to deter-
mine the transition temperature T}, nevertheless accurately, use is made of the
fourth’ order cumulant [Binder 1981], which is defined in the case of a one-
component order parameter as

4
s =4 o143

where (¢F)n denotes the thermal average of the k’th moment of the order pa-
rameter for an N-particle system. It has been shown [Vollmayr et al. 1993] that
g4(N,T), aside from small correction terms, has a size-independent crossing
point g; at a first-order phase transition. For the calculation of gj, the geom-
etry of the simulation cell is supposed to be constant. It is difficult to satisfy
this requirement without increasing the particle number N considerably for the
quartz structure if the cell geometries are approximately cubic. The smallest
box length should exceed twice the cutoff radius which limits us to N > 1080.
While it is still possible to equilibrate system sizes of the order N = 2000 near
the phase transition, this becomes extremely difficult for N ~ 4000. Note that
the equilibration time increases algebraicly with N at a second-order and expo-
nentially with IV at a first-order transition point.

The expectation values of the cumulants are shown in Fig. 12. Due to the
fact that the cell geometry slightly differ between the N = 1080 and the N =
2160 system, we can not expect perfect crossing of the two different systems at
Ti.. However, comparison to the value where the cumulants cross in a Landau
description of this transition (see below for more details) makes it plausible that
the crossing of the cumulants shown in Fig. 12 is indeed meaningful. Within the
statistical error bars, it is possible to locate the transition at T}, ~ 740 K with
an uncertainty of about 5 K for both system sizes.

In order to describe the transition within a Landau theory with a single scalar
order parameter, we adopt the form [Carpenter et al. 1998]

F(§,T) = 5alT ~T)§" + 1ot + zcf®, (16)

where F' is the free-energy per particle as a function of temperature T' and order
parameter ¢ while a, b, ¢, and T, are (free) parameters. In order to find those
parameters that are appropriate to describe our simulation results, we need
to generalize the approach to finite system sizes. This is done by evaluating
numerically expectation values of the n’th power of ¢ using (8 = 1/kgT) in the
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following way:
[5o dp 9" exp{—-BNF($,T)}
Joo dpexp{—BNF(¢,T)}

The parameters a, b, ¢, and T, were determined by fitting the temperature
dependence of the order parameter (| ¢ |) for the N = 1080 system. The fit is
shown on the right-hand side of Fig. 12 along with similar data for N = 2160.
We also included data in which the thermodynamic limit was taken. It can be
seen that the size effect in (| ¢ |) is reasonably described by Landau theory.

(9") =

(17)
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Figure 12: Left: Fourth order cumulant g4 as a function of temperature 7' for
two different system sizes. The value g5 at which crossing of the cumulants is
predicted within Landau theory is indicated by a straight line. Broken lines
are drawn to guide the eye. Right: Order parameter (| ¢ |) as a function
of temperature. The lines reflect fits according to Landau theory, whose free
parameters were adjusted to the N = 1080 curve. The solid line corresponds
to the thermodynamic limit in Landau theory, Broken lines represent finite-size
Landau theory. From Miser and Binder (2001).

Overall, similar coefficients as from experimental data are drawn from the
simulations. Most importantly, the parameter b is found to be slightly negative,
T. = 715 K is obtained about 115 K smaller than in experiment, and T; — T, ~
20 K is found about twice as large as in real experiment [Carpenter et al. 1998].
Nonetheless, the global picture of experiment is certainly reproduced. Since
lattice parameters, elastic constants, and phase transition agree reasonably well
with experiment, it is safe to draw qualitative conclusions about properties which
are easily accessible in the simulation, but not as easily accessible experimentally,
i.e., information on the local structure.
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5 Mechanical stability of quartz-I and quartz-I1

In this section, we will be concerned with another phase of quartz, namely the
high-pressure phase called quartz II. Quartz IT is a silica polymorph that can be
obtained from a-quartz by slowly increasing the external pressure P to values
slightly larger than Pi_1;1 = 21 GPa [Kingma et al. 1993]. The crystal-crystal
transition has been observed a little less than a decade ago and the mecha-
nism driving the transition is still subject of a controversial debate [Binggeli and
Chelikowsky 1992, Gregoryanz et al. 2000, Miiser and Schoffel 2001]. Com-
puter simulations of regular quartz (quartz I) suggested that one of the Born
stability criteria (BSC) was expected to be violated in a-quartz at 25 GPa and
the transition from quartz I to quartz II was related to this mechanical insta-
bility [Binggeli and Chelikowsky 1992]. A reanalysis of the BSC in terms of
experimentally measured elastic constants, however, found a large discrepancy
to these theoretical predictions [Gregoryanz et al. 2000]: The hypothetical, me-
chanically (meta)stable pressure regime of quartz I for P > Pi_1 was found to
go up to values as large as 40 GPa. Snapshot of the pressure induced phase
transformation are shown in Fig. 13

Figure 13: Snapshot of quartz under pressures at: p = 0, 8, 21, and 22 GPa
(from the left to the right).

The suspicion has been raised that this discrepancy might be due to an in-
consistent evaluation of the BSC [Miiser and Schdoffel 2001]: The definition of
second-order elastic constants is not unique at non-zero pressures. It is com-
monly distinguished between elastic constants C;; and stiffness or Birch coeffi-
cients B;; [Wallace 1971]. The latter are obtained from evaluating Eq. (7), while
the Cy; are obtained by using the standard estimators for elastic constants in
the NVT ensemble. The proper BSC for non-zero pressures is to require that
the matrix B;; be positive definite [Wang et al. 1993]. Thus, when analyzing
the mechanical stability of a-quartz under pressure, the BSC

B3 = (011 — 012)044 — 20124 >0 (18)
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is not meaningful. This condition has often been examined when discussing
whether the pressure induced amorphization transition reported in molecular
dynamics simulations (MDS) is driven by a mechanical instability [Gregoryanz
et al. 2000, Binggeli and Chelikowsky 1992, Tse, Klug and Le Page 1992].

Distinguishing between Birch and elastic constants reveals that the BSC over-
estimates the stability of a-quartz under pressure considerably. This is shown in
Fig. 14. In the inset of that figure it can be seen that the MDS reproduce the ex-
perimentally measured pressure dependence of Bjs fairly well. This comparison
justifies the use of the emploied model potential surface for the stability analysis.
If B,g replace Cop in Eq. (18) the behavior is similar to the one reported by
Binggeli and Chelikowsky [Binggeli and Chelikowsky 1992], e.g., a zero slope of
Bj at small pressures is found.
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Figure 14: Minimum eigenvalue of the matrix of the elastic constant (open
diamonds) and of the Birch matrix (filled circles) as a function of pressure.
Inset: Born stability criterion applied to elastic constants (diamonds) and Birch
coefficients (closed circles). Error bars are about symbol size. Crosses represent
data from Gregoryanz et al. (2000).

The correct stability criterion is examined in the main part of Fig. 14. The
smallest eigenvalue of the Birch coefficients tends to zero much faster than the
stability criterion (using regular elastic constants) related to Eq. (18). From the
main part of Fig. 14, mechanical instability would be expected at a pressure
p =~ 25 GPa, while the former analysis predicts an instability at p ~ 40 GPa.

Preliminary analysis shows that the transition between a-quartz and quartz
II is kinetically hindered and non-reversible, but these studies will only be pub-
lished in the near future.
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6 Conclusions

These lecture notes gave an overview over selected computer simulation studies
of the structure of S-quartz, the temperature driven phase transition between 3-
quartz and a-quartz and the pressure driven phase transition between a-quartz
and quartz II. The relationship between structure and structure fluctuations on
one hand and elastic properties and phase transition driving mechanisms on
the other hand was explored. Some features turned out to be more complex
than those that we know from one-component systems, i.e., the non-Gaussian
nature of the local disorder in S-quartz and the consequences for the harmonic
properties. Many conclusions drawn here can be believed to be rather generic for
solids with similar tetrahedral local order (cristobalite, various phases of GeOs,
etc.).

It was also shown how model potentials for relatively complex systems can be
tested in computer simulations. This is done by evaluating lattice parameters,
elastic constants, and thermal expansion at low temperature. In the latter case,
quantum effects of the ionic motion need to be taken into account. It was also
shown that the use of finite-size scaling techniques, which are usually only applied
to models (that are computationally much more feasible, Ising model, simple
Lennard-Jonesium, etc.) is perfectly adequate to analyze phase transitions in
more complex materials.
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