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Abstract. Friction between two solid bodies in relative sliding motion takes place
on a large spectrum of length and time scales: From the nanometer/second scale in
an atomic force microscope up to the extremely macroscopic scales of tectonic motion.
Despite our familiarity with the effects of friction, fundamental questions remain unan-
swered. The atomistic origins of well-established phenomenological friction laws are
controversial. Many explanations, seemingly well-established, have recently been called
into question by new experimental results. Computer simulations have also revealed
flaws in previous theoretical approaches and led to new insights into the atomistic pro-
cesses responsible for friction. In this chapter, selected computer simulation studies of
friction and their implications will be discussed. Emphasis will be given to the question
what one can learn from a friction simulation and how it is possible to avoid effects
that merely arise due to poor models. Moreover, it will be outlined how it is possible
to gain insight into tribological processes that take place on macroscopic time scales
with the help of atomistic computer simulations, which are typically constrained to the
nanosecond regime.

1 Introduction

The possibility of developing an atomistic theory of the friction between solid
bodies has increased significantly over the last decade. New experimental tech-
niques have made it possible to study well-defined mechanical single-asperity
contacts, typically a few nanometers broad in an atomic force microscope [1, 2]
(AFM) experiment and a few micrometers broad in a surface force apparatus
(SFA) experiment [3, 4]. The physical laws observed in such nano and microscale
contacts often deviate qualitatively from those observed in macroscopic systems.
For instance the friction-load dependence in a single asperity contact [5, 6] usu-
ally deviates strongly from the linear relationship that is almost commonly ob-
served in macroscopic multi-asperity contacts [7]. Another example for scale
effects is the onset of oscillatory depletion forces between approaching surfaces
when the confinement of a lubricant is reduced to a few nanometers and the
frequently observed concurrent dramatic increase in shear forces that oppose
relative lateral sliding of the two solids in contact [8, 9]. It is obvious that the
fundamental understanding of tribology can only be achieved by a combination
of experimental, theoretical, and computational efforts. This is not only an in-



teresting, scientific endeavor, but improving the understanding and ultimately
controlling tribology (science of friction, lubrication, and wear) has been and
will remain useful for the development of new technologies. One example is
the design of novel micro mechanical devices which one may expect to be fa-
cilitated through a better atomistic theory of friction. From a computational
point of view, even the small scale is not trivial to model realistically, because
the chemically detailed, atomistic simulation of an AFM tip scratching on a
surface requires the simultaneous use of techniques that are usually employed
to address different regimes in space and time. Yet, despite these difficulties,
atomistic simulations will not only yield insight into nanotribology but more-
over become increasingly important in explaining macrotribological phenomena,
among other reasons because they can provide constitutive equations for the use
in finite element methods.

Another reason for the importance of simulations in tribological contexts
with respect to purely analytical approaches is that there is no principle like
minimization of free energy that determines the steady state of non-equilibrium
systems. But even if there was, simulations would be needed to address the
complex systems of interest, just as in many equilibrium problems.

This chapter is meant as a help to conduct atomistic simulations of friction
between solids in a meaningful and efficient way, rather than to give a broad
overview of the field. A far more comprehensive review on results of friction
simulations was given recently [10]. Here, technical issues will be emphasized.
In particular, I will try to point out the traps (of which there are many) that
can significantly depreciate the scientific relevance of friction simulations. Their
results depend to a large degree on the boundary conditions, the choice of the
initial geometry, and the way in which the system is driven. This statement
might sound trivial, but the idealized framework or artificial features encountered
in simulations often make it difficult to compare the results of the simulations
to experiments. Hence it is necessary to know prior to the simulation which
interactions of the system are relevant and need to be included into the model
and which features of the model are irrelevant. In the present context, I call a
feature irrelevant if it does not change the tribological behavior in a qualitative
way. The relevant features of a model may include the degree of correlation in
the surface corrugations between the two sliding objects, the degree and chemical
nature of surface contamination, the dimensionalities of the interface and that
of the slider, the surface roughness on mesoscopic scales, the elasticity of the
solids in contact, thermal and quantum fluctuations of the atomic motion, as
well as the age of the contacts, to name a few. Naturally, the relevance of one
feature is most always intertwined with that of another feature. Moreover the
chemical composition of the interface, which is reflected in the choice of the force
field, can also play an important role. In order to understand specific behavior,
it may be insufficient to analyze models that merely employ simple two-body
potentials.

A typical contact between two real solid bodies is such that prior to con-



tact the bodies are three-dimensional, their two-dimensional surfaces are locally
curved, contaminated with dirt or intentionally lubricated, and the surface cor-
rugations of the bodies are uncorrelated. The solids can yield plastically and
long-range elastic deformations are possible, which however, are strongly sup-
pressed by long-range elastic interactions. In simulations one often encounters
the opposite situation. The surfaces are already flat before contact takes place,
there is no contamination, and by some magical force, the corrugation profiles
of both bodies are not only identical, but also perfectly aligned. The atoms are
sometimes pinned to ideal lattice sites, disabling long-range elastic deformations,
or alternatively, they are coupled as a two-dimensional harmonic sheet, thus ne-
glecting long-range elastic interactions. Whether these discrepancies of the real
world and the simulation is relevant depends on the problem under investigation.
In many cases, however, the tribological properties are qualitatively altered by
the simplifications.

Not only the geometry and the interactions of the model are important, but
in addition, the results of tribological simulations often depend sensitively on
the way in which the system is driven [11]. Driving the slider in an unrealistic
way poses the second class of potential traps. One can get qualitatively different
behavior if one assumes constant sliding velocity or if the slider is pulled with
a weak spring. Furthermore the equivalence of different ensembles that are
valid for large systems in equilibrium thermodynamics (constant separation vs.
constant load, constant temperature vs. constant energy) usually breaks down
in non-equilibrium situations.

The reminder of this chapter will start with the presentation of a simple
but rather generic case study emphasizing the role of boundary conditions and
other details. In section 2, a simple model for friction will be introduced, origi-
nally proposed by Prandtl but commonly referred to as Tomlinson model. The
important lesson to be learned is that we need to identify relevant mechanical
instabilities in order to understand solid friction. A discussion of dry friction
will be given in section 3, including the analysis of friction forces as a function
of disorder and dimensionality of interface and slider. Selected studies of simu-
lations incorporating lubricants will be presented in section 4. section 5 focuses
on technical issues, in particular on how to model the confining walls and the
way in which they are driven. section 6 will contain the conclusions.

1.1 The relevance of details: A simple case study

Let us have a look at the relevance of ‘details’ in a simple model system. Consider
two rigid, impenetrable, identical walls separated by a boundary lubricant, like
a quarter layer of simple, non-reactive spherical molecules. A schematic one-
dimensional representation is given in Fig. 1. The lower wall, which will be
called the substrate, is supposed to be fixed, while the upper wall is pulled via a
spring of varying stiffness k at a small, fixed velocity v. For large k, one expects
smooth sliding of the upper wall similar to fixed sliding velocity, while at small



Figure 1: Schematic representation of boundary lubrication. The slider is moved
with respect to a fixed substrate at velocity v via a spring of stiffness k. The two
solids do not interact directly but only via the boundary lubricant (full circles).

k one expects stick-slip motion, which may best be characterized as a jerky
motion of the top wall: The slider is stuck for a long time and then suddenly
pops forward before it is stuck again. Stick-slip motion occurs when mechanical
stress builds up sufficiently slowly in a contact. After a certain threshold force
is reached, namely the static friction force, the two solids start sliding and the
stored elastic energy is quickly released as kinetic energy, ultimately leading to
generation of heat and/or plastic deformation. From a macroscopic description,
unstable, stick-slip trajectories are obtained if the friction force between slider
and substrate decreases with increasing velocities. Stick-slip motion is observed
from nanoscale junctions up to tectonic plates.

The idealized situation of Fig. 1 can be analyzed in terms of a numerical
simulation. This is done by first defining a suitable Hamiltonian for the sys-
tem. One can then integrate the resulting equations of motion numerically. The
friction force can be calculated by averaging the force in the driving spring or
alternatively from the force that is exerted from the boundary lubricant and the
substrate on the upper wall. Once steady state is reached, the two methods
must give the same expectation value since otherwise the top wall would be ac-
celerated. See section 5 for a more thorough description of technical issues. The
results of such a molecular dynamics simulation for a two-dimensional interface
are shown in Fig. 2. Both surfaces are identical, namely triangular lattices with
identical lattice constants. In one simulation, the surfaces are oriented perfectly,
in another simulation, one surface is rotated by 90°, which makes the two sur-
faces essentially incommensurate. Two crystals are called incommensurate if
they do not share a common periodicity. Of course, in a computer simulation
two solids cannot be perfectly incommensurate due to the finite system size.
But if the smallest common periodicity coincides with the linear length of the
simulation cell, one can usually call the surfaces incommensurate for all practical
purposes.

On the left-hand side of Fig. 2, one can see that the friction forces depend
sensitively on the relative orientation of the two surfaces, even though they
are not in direct contact. In particular, the commensurate system shows large
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Figure 2: Left: Average force per load (F')/L acting on a block pulled at small
velocity with spring constant k. Block and substrate are separated by a boundary
lubricant. Commensurate (com) and incommensurate (inc) orientations between
the identical, confining walls are considered. Right: Instantaneous force acting
on the spring of the commensurate system. From Ref. [12].

friction forces in the stick-slip regime at small pulling spring constants k£ and
small forces in the smooth-sliding regime at large k. In the commensurate case,
the instantaneous force behaves in a very periodic way. In particular, at those
values of k, where the friction forces start to decrease dramatically, one can
observe spikes of two different heights in the force spikes, see the right-hand side
of Fig. 2. The different spikes can be related to hcp and fcc like configurations of
the boundary lubricant (ABA and ABC type layering for lower wall, lubricant,
upper wall). However, one needs to be aware that insights into such detailed
mechanisms are only useful, if we try to understand experiments in which the
effort has been made to orient two surfaces with respect to one another.

Unlike the perfectly aligned walls, the incommensurate system does not show
the dramatic drop in (F') as it crosses over from stick slip to smooth sliding.
Hence, in the present study, we may identify the crossover regime for the com-
mensurate surfaces as an artifact of the commensurability. Moreover the spikes
in the instantaneous friction force (not shown here) are rather erratic [12]. To
some degree, the resulting trajectory of the incommensurate case is even rem-
iniscent of earthquake dynamics as discussed in Ref. [12]. This can be seen as
unexpected, because the microscopic origins of friction between tectonic plates
certainly involve much more complicated processes than those considered in the
simple molecular dynamics (MD) study of a confined boundary lubricant. So
even if we reproduce the effects observed in nature or experiment satisfactorily,
it does not necessarily mean that we have identified the relevant atomistic pro-
cesses leading to friction. The case study also reveals that the friction force
derived from the simulations depends strongly on the driving device, namely the



harder the spring the smaller the friction force. This effect is particularly strong
for the commensurate surfaces.

2 Solid friction versus Stokes friction

The classical laws of friction go back to Coulomb and Amontons [13]. Static
friction Fj, the force needed to initiate relative sliding between two solid bodies,
is proportional to the load L (first law) and independent of the (apparent) area
of contact (second law), thus

F, = p,L. (1)

1s is called the static friction coefficient that (to a good approximation) only
depends on the chemo-physical properties of the interface and the two solids in
contact. The third friction law says that the kinetic friction force Fy, the force
needed to keep two solids in relative sliding motion, is (rather) independent of
the sliding velocity v. Fj, also satisfies the first two laws and in most cases
does not vanish in the limit small of sliding velocities v. Of course, in true
thermodynamic equilibrium, or alternatively in the mathematical limit v — 0,
one would expect kinetic friction to vanish. For most practical and experimental
applications, however, one is far away from this limit. The situation is similar
to that of the static shear modulus Cy4 of window glass at room temperature.
While the true equilibrium value of Cy44 is commonly believed to be zero, the
experimentally measured result is in the order of a few dozen Gigapascals.

The solid friction laws are different from those for Stokes or viscous friction
which are valid for the motion of a (Brownian) particle in a fluid or a gas. In the
case of Stokes friction, there is a linear relationship between driving force and
average velocity v, provided that F' is sufficiently small. The proportionality co-
efficient, which is related to the viscosity, can be calculated (at least in principle)
from equilibrium statistical mechanics in terms of linear response theory [14].
The viscous force turns out to be the natural consequence of the interaction of
one particle with many other particles. The (linear) response of one particle or
excitation to an external force can be described as if the other particles were act-
ing like a heat bath composed by a friction term linear in velocity plus random
forces. This concept cannot only be applied to the famous Brownian motion,
but it can be extended to many different cases such as the damping of phonons
or other elementary excitations in solids. Note that the fluctuation-dissipation
theorem also predicts the response to a small time-dependent force.

If the coupling of a degree of freedom to a heat bath is a condition for Stokes
friction or viscous damping, what is the requirement for F; and F}, to be different
from zero? If two solids interlock geometrically, there will of course be a finite Fy,
see section 3.1. However, finite F does not imply that Fj(v — 0) remains finite
in the limit v — 0. In particular if we disregard the internal degrees of freedom
of the two solids, there is no way to dissipate energy and Fj = 0 simply owing
to energy conservation. In a first approximation, one may reflect the internal



degrees of freedom in terms of a viscous force, but then Fj would still vanish
linearly with v in contradiction to most experimental observations.

In 1928, Prandtl suggested that elastic instabilities change the picture qual-
itatively [15]. Usually this insight is attributed to Tomlinson, who published
similar ideas in 1929 [16]. In his model, Prandtl describes the substrate as com-
pletely rigid. The slider is moved at constant velocity v with respect to the
substrate. The slider’s surface atom feel a force from the substrate that is peri-
odic with the substrate’s lattice constant b. Furthermore the surface atoms are
supposed to be coupled harmonically to their lattice sites by a spring constant
k and there is dissipation linear in the atom’s velocity v,. If we assume that
the microscopic origin of the dissipation is the consequence of the interaction
of atom n with a heat bath, i.e. the substrate’s phonons, then its equation of
motion reads:

Mpdn + MYty = —k(z, — 29) + fosin(2nz,/b), (2)

where we assume that the equilibrium position z° of atom n in the slider moves
at constant velocity, for example z° = vt.

Let us analyze the motion of atom n qualitatively for large values of k£ and
small values of k. If k is larger than 27 fo/b, then it is easy to show that each
atom has only one well-defined mechanical equilibrium site, irrespective of the
value of z9. When the upper solid is moved at a constant, small v, each atom
will always be close to its unique equilibrium position. This equilibrium position
moves with a velocity that is in the order of v. Hence the dissipated friction force
is of the order of m~yv and consequently F}, vanishes linearly with v as v tends
to zero. The situation becomes different for k£ < 27 fo/b. Atoms with more than
one stable equilibrium position will now pop from one stable position to another
one when the slider is moved laterally. For small pulling velocities v, such a
process occurs when an atom does not have a mechanically stable position at
time ¢t + 0t in the vicinity of the old stable mechanical position near which it
was located at time ¢. Such a situation is discussed in Fig. 3 in terms of the
time-dependent potential energy V' (z) associated with the conservative forces,
namely

V(z) = % fobcos(2mz/b) + %k(mn a0y (3)
with £9 = v9 > 0. In the ‘popping’ processes (indicated by the thick solid line
in Fig. 3), the velocities &, will exceed v by orders of magnitudes for v — 0.
At small v, the dynamics along most of the sinusoidal line is rather independent
of the precise value of vy and the dissipated energy [ dzymov has a well-defined
positive limit Fy(vo = 0). Hence in the absence of thermal fluctuations that
have been disregarded in this discussion, Fj remains finite even in the limit of
infinitely small v.

Based on his model, Prandtl formulated the condition for finite F}, in the limit
of small sliding velocities: If the (elastic) coupling of the mass points is chosen
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Figure 3: Schematic representation of the time evolution of the potential energy
in the Prandtl model (dashed lines), see Eq. (3). All curves are equidistant in
time, separated by a time interval At. The circles denote mechanically stable
positions and the solid line connects mechanically stable points, indicating the
motion of an overdamped point particle.

such that at every instance of time a fraction of the mass points possesses several
stable equilibrium positions, then the system shows hysteresis.... In the context of
friction, hysteresis translates to finite static friction or to a finite kinetic friction
that does not vanish in the limit of small sliding velocities. The word ‘elastic’ in
Prandtl’s statement is put into parenthesis, in order to make the statement more
general, for example, applicable to the case of boundary lubrication. From this
analysis, we see that solid friction arises from instabilities. Hence an important
lesson to be learned from computer simulations is what these instabilities on a
microscopic level are and how these instabilities affect the tribological behavior of
a junction. A separate issue is how the heat generated in the pops is transported
away from the interface.

Incorporating thermal fluctuations changes the picture qualitatively. In the
strict limit v — 0 when all atoms have sufficiently much time to find their true
thermal equilibrium for all relative wall positions, friction will vanish linearly
with v according to linear response theory. However, in a large regime of small,
but finite v, Prandtl predicted that owing to thermal fluctuations, the friction
force in his model should only have small, logarithmic corrections in the order of
Inv. Prandtl’s hypothesis was rederived many times and an analysis of experi-
mental AFM data seemed to confirm that picture [17]. However, a more refined
analysis of the thermal fluctuations in the Prandtl-Tomlinson model making use
of the theory of fluctuation induced spinodal decompositions [18] suggests cor-
rections in the order of (kgT Inv)?/%, which indeed fits the experimental results
distinctly better than the simple Inv corrections.



3 Dry friction

The term dry friction obtains a novel meaning in computer simulation, because
one can eagsily prepare absolutely non-contaminated surfaces. Experimentalists
often use a less strict definition and mean to express that no lubricant has been
added intentionally.

3.1 Rigid walls and geometric interlocking

Early theories of friction were based on the purely geometric argument that
friction is caused by interlocking of impenetrable and rigid surface asperities [19,
20]. The idea (Fig. 4) is that the top solid must be lifted up a typical slope tan a
determined by roughness on the bottom surface. If there is no microscopic
friction between the surfaces, then the minimum force to initiate sliding is

F, = u,L (4)

with ps, = tan a. This result satisfies Amontons’s laws with a constant coefficient
of friction pg = Fy/L = tana. In 1737, Bélidor obtained a typical experimental
value of us &~ 0.35 by modeling rough surfaces as spherical asperities arranged to
form commensurate crystalline walls [20]. However, asperities on real surfaces
do not match as well as envisioned in these models or sketched in Fig. 4. On
average, for every asperity or atom going up a ramp, there is another going down.
One concludes that the mean friction between rigid surfaces vanishes unless they
happen to have the same periodicity and alignment.

i

Figure 4: Sketch of two surfaces with interlocking asperities. The top surface
experiences a normal load L and a lateral force F', which attempts to pull the
top surface up the slope tan a. The bottom wall is fixed.

A cancellation between ‘up’ and ‘down’ on an atomic scale happens par-
ticularly easily between two flat, incommensurate surfaces. There have been
a significant number of computer simulations showing that the wearless static
friction becomes extremely small, except in the artificial case of identical and per-
fectly aligned walls. Atomistic computer simulations of iron on iron [21], a blunt
pyramidal diamond tip on a metal surface [22], a blunt pyramidal copper tip on
incommensurate copper substrates [23], interlayer sliding in multiwalled carbon
nanotubes [24], and Lennard Jonesium on Lennard Jonesium [25] all confirm the



simple prediction that lateral forces cancel out to a significant degree. These sim-
ulations have in common that the solids were treated truly three-dimensionally
and that the atoms (interacting via microscopic interaction potentials) were al-
lowed to relax thus making long-range elastic deformations possible. Significant
lateral forces were observed only in combination with strongly irreversible pro-
cesses such as plastic deformation [22], the production of wear [23, 26], material
mixing, or cold welding [25], but not due to geometric interlocking.

When two rigid solids in contact are disordered, the cancellation of lateral
forces is less systematic than for an incommensurate contact between rigid bod-
ies. For flat solids with atomic scale roughness only, one can expect that the
lateral forces F; grow proportional to the square root of the intimate area of
contact A for a given, constant normal pressure o,. Since the load L is given
by Aoy, the ratio Fy/L vanishes with 1/v/A as A goes to infinity [27]. But geo-
metric interlocking only explains static friction. Kinetic friction can still vanish,
because the energy required to lift up the slider in Fig. 4 to the top of the
hill can be regained in principle by moving it downhill in a controlled way. As
discussed in section 2, the situation can change dramatically in principle if the
elastic interactions within the bulk are sufficiently weak to cause elastic or other
instabilities.

3.2 Elastic deformations: Role of disorder and dimensions

Although we are concerned with computer simulations of friction rather than
with theoretical arguments, it is instructive to analyze the interplay of disor-
der, dimensionality, and elastic deformations. To do this, let us consider a
dobj-dimensional elastic solid, in which neighbored atoms are coupled via simple
springs. We may safely assume the free elastic solid to be mechanically stable,
meaning that the tensor of the elastic constants is positive definite. The dimen-
sion of the interface between the slider and disordered substrate is denoted by
dint-

In such a situation, there will be a competition between the random substrate-
slider interactions and the elastic coupling within the solids. An important ques-
tion to ask is how the interactions change when we change the scale of the system,
for example, how strong are the random and the elastic interactions on a scale
2L if we know their respective strengths on a scale L. Here L gives the linear
dimension of the solids in all directions, that is to say parallel and normal to the
interface. As discussed above, the random forces between substrate and slider
will scale with the square root of the interface’s size, hence the random forces
scale with L%=/2_ The elastic forces on the other hand scale' with Ldbi=2_ In
the thermodynamic limit L — oo, the effect of disorder will always dominate

LA linear chain can be more easily compressed if we replace one spring by two springs
coupled in series. In two dimensions, springs are not only coupled in series but also in parallel,
so that the elastic coupling remains invariant to a ‘block transformation’. Each additional
dimension strengthens the effect of ‘parallel’ coupling.

10



the elastic interactions or vice-versa, unless
Lnt/2 o [doni=2 (5)

For limy,_, o L%n/2/L4i~2 >> 1, the random interactions will dominate and
hence pinning via elastic instabilities cannot be avoided. This disorder-induced
elastic pinning is then similar to that of compliant, ordered systems as discussed
above within the Prandtl-Tomlinson model. For limy,_,o, L%n/2/[%ri~2 << 1,
the long-range elastic forces dominate the long-range random forces. The slider’s
motion can only be opposed by elastic instabilities if the elastic coupling is
sufficiently weak at finite L in order to make local pinning possible, again akin
of the case A > 1 in the Prandtl-Tomlinson model.

The so-called marginal situation, in which both contributions scale with the
same exponent, dint/2 = dobj — 2, occurs in the important case of 3-dimensional
solid bodies with 2-dimensional surfaces. In the marginal situation, the friction
force can stay finite, however, one may expect the friction force per unit area
and hence the friction coefficient to be exponentially small [28]. The marginal
dimension in the case of dob; = diny (adsorbed monoatomic layers, charge density
waves, etc.) is dmar = 4 [29]. But even in dimensions smaller than the marginal
dimension, friction forces may turn out to be small. One example is an experi-
mental quartz crystal microbalance study [30] of solid and liquid krypton films
on disordered gold surfaces (dobj = dint = 2), for which the pinning forces were
undetectably small.

3.3 Extreme conditions and non-elastic deformations

In many cases, the atomistic topology of chemical bonds changes when two
solids come into intimate contact and are start to slide. As a consequence, the
surface will be altered dramatically when the two solids are removed from one
another after the sliding process. A description in terms of elastic deformations
is not applicable any longer in such a situation. There can be many reasons for
non-elastic deformations: (i) plastic flow during contact formation [26, 31] or
other thermodynamically driven cold welding [25], (ii) plastic deformations due
to large normal pressures [22], (iii) large sliding velocities [32], and (iv) sliding
induced generation of dislocations [23], to name a few.

The processes that occur in these strongly non-equilibrium situations may
become rather complex. This makes it even more important to set up the sim-
ulations and to analyze the processes in a meaningful way. For example, it is
important to choose the initial conditions such that the bulks have room to yield
and that the generated debris does not necessarily remain within the contact.
A simulation methodology which allows debris to be transported away from the
interface is shown in Fig. 6 in the context of sliding of lubricated surfaces.

One particularly nice study of strongly irreversible processes consists of large
scale molecular dynamics simulations of the indentation and scraping of metal by

11



Belak and Stowers [22]. Their simulations show that tribological properties are
strongly affected by wear or the generation of debris, which in turn may again
depend strongly on such ‘details’ as the system’s and the interface’s dimension-
ality. Belak and Stowers considered a blunted carbon tip that was first indented
into a copper surface and then pulled over the surface. Since diamond is a hard
material, the tip was treated as a rigid unit. Interactions within the metal were
modeled with an embedded atom potential and Lennard-Jones potentials were
used between Si and Cu atoms.

In the two-dimensional (2D) simulation, indentation was performed at a con-
stant velocity of about 1 m/s. The contact followed Hertzian behavior up to a
load L ~ 2.7 nN and an indentation of about 3.5 Cu layers. The surface then
yielded on one side of the tip, through the creation of a single dislocation edge
on one of the easy slip planes. The load needed to continue indenting decreased
slightly until an indentation of about five layers. Then the load began to rise
again as stress built up on the side that had not yet yielded. After an indentation
of about six layers, this side yielded, and further indentation could be achieved
without a considerable increase in load. The hardness, defined as the ratio of
load to contact length (area), slightly decreased with increasing load once plastic
deformation had occurred.

After indentation was completed, the carbon tip was slid parallel to the
original Cu surface. The work to scrape off material was determined as a function
of the tip radius. A power law dependence was found at small tip radii that did
not correspond to experimental findings for micro-scraping. However, at large
tip radii, the power law approached the experimental value. Belak and Stowers
found that this change in power law was due to a change in the mechanism of
plastic deformation from intragranular to intergranular plastic deformation.

In the three-dimensional (3D) simulations, the substrate contained as many
as 36 layers or 72,576 atoms. Hence long-range elastic deformations were in-
cluded. The surface yielded plastically after an indentation of only 1.5 layers,
through the creation of a small dislocation loop. The accompanying release of
load was much bigger than in 2D. Further indentation to about 6.5 layers pro-
duced several of these loading-unloading events. When the tip was pulled out
of the substrate, both elastic and plastic recovery was observed. Surprisingly,
the plastic deformation in the 3D studies was confined to a region within a
few lattice spacings of the tip, while dislocations spread several hundred lattice
spacings in the 2D simulations. Belak and Stowers concluded that dislocations
were not a very efficient mechanism for accommodating strain at the nanometer
length scale in 3D.

When the tip was slid laterally at v = 100m/s during indentation, the friction
or ‘cutting’ force fluctuated around zero as long as the substrate did not yield
(Fig. 5). This nearly frictionless sliding can be attributed to the fact that the
surfaces were incommensurate and the adhesive force was too small to induce
locking. Once plastic deformation occurred, the cutting force increased dramat-
ically. Fig. 5 shows that the lateral and normal forces are comparable, implying

12
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Figure 5: Normal (left) and lateral (right) force on a three dimensional, pyra-
midal diamond tip on a copper surface as a function of time. No plastic flow
was reported up to 1,000 time steps. The indentation stopped at about 5 layers
after 2,000 time steps. From Ref. [22].

a friction coefficient of about one. This large value was expected for cutting by
a conical asperity with small adhesive forces [37].

4 Lubrication

Any atom or molecule that is bonded weakly to a surface can be considered to
perform as a lubricant as long as they do not get squeezed out of the microscopic
points of contact. Examples are not only synthetic and mineral oils, but also
molecules from the atmosphere physisorbed between the surfaces such as hydro-
carbon chains or sometimes even simple nitrogen molecules. Lubricants hinder
two surfaces to come into intimate contact. Their presence inhibits or at least
reduces the generation of wear and debris. For example, an appropriate additive
in a lubricant reacts with a fresh metal surface to form protective surface films.
In many cases, a lubricant film glassifies in a point of large normal stress, i.e.,
in a microscopic point of contact. When the junction breaks, the contact breaks
within the lubricant and not within one of the contacting asperities.

The traditional view is that lubricants do not only reduce wear but generally
reduce friction between two solids. This is certainly true for most macrotribo-
logical processes. However, as we have seen in many examples discussed above,
we do not expect any significant solid friction in a microscopic contact as long
as no plastic deformation or other strongly irreversible processes occur. In the
absence of such processes, the presence of a few adsorbed lubricant particles can
increase solid friction, as it is able to accommodate the surface corrugation of
both walls simultaneously and thus lock the confining walls together.

The overwhelming majority of experimental and technological sliding systems
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incorporates lubricants. It is important to include the effect of these lubricants
in simulations if one wants to compare simulations to the bulk of tribological
experiments. It is then desirable to mimic the experimental, mechanical and
thermodynamic boundary conditions such as temperature 7', pressure p, chemi-
cal potentials u;, etc. as closely as possible. One should of course keep in mind
the Gibbs-Duhem relation, which states that it is not possible to specify all in-
tensive thermodynamic variables (such as T', p, the various ;) independently
from one another.

In a molecular dynamics (MD) or in a Monte Carlo (MC) simulation it is
rather simple to keep T and p constant. It is more difficult to keep p constant,
because this requires the use of grand canonical moves. These moves typically
equilibrate rather slowly and are likely to interfere seriously with the dynamics in
MD or the pseudo-dynamics in MC simulations?. Since most tribological effects
are non-equilibrium effects and therefore intimately linked to the dynamics of
the system rather than to their thermodynamics, it is important not to alter the
dynamics in an artificial way.

In some cases, it is nevertheless desirable to change the number of atoms
in the contact. It was suggested to include this possibility with the help of
reservoirs [33] as shown on the left-hand side of Fig. 6. While the total particle
number N is kept fixed in such a simulation, the number of atoms in the contact
can change and one may refer to such a simulation as pseudo grand canonical.
The externally applied pressure (tensor) and temperature can then be imposed
like in an equilibrium simulation, for instance in such a way that the lubricant
remains fluid in the reservoir.

The simulation of the reservoir necessitates simulating many bulk-liquid
molecules outside the real contact, producing a certain computational overhead.
It was suggested to replace the need for a reservoir by fixing 7' and the parallel
pressure p to bulk values [34]. Tt was furthermore suggested to control p by
adjusting the normal separation D between the solids and to leave the contact
area A constant. The strategy would be to repeat simulations with different
values of N, all under the same fixed A, p;, and 7. One of the results would
be the depletion force, which is the average normal pressure (p, ) times A, as a
function of N similar to that shown on the left-hand side of Fig. 6. Note that
the differentiation between p and p, implies that the lubricant does not corre-
spond to an isotropic fluid any longer. Indeed, the oscillations in the depletion
forces are accompanied by strong layering in the lubricant. In order to under-
stand the concurrent dramatic increase in the resistance to sliding observed in
experiments [8, 9], one also has to investigate the effect of confinement on the
viscosity [35] and the way in which the (atomic-scale) corrugations imprint into
the lubricant [36].

2If the MC simulation consists of small local moves only, then the generated trajectories
correspond to overdamped dynamics that may provide valuable information on solid friction.
However, there is no general principle for determining the appropriate probability distribution
of steps in a non-equilibrium MC simulation.
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Figure 6: Left: Geometry of a pseudo grand canonical simulation box. Small,
regularly arranged spheres represent gold atoms from the solid bulks, while larger
circles are associated with lubricant molecules. The lubricant can go back and
forth between contact and reservoir. Right: Normal force as a function of sep-
aration for two different lubricants as a function of surface separation. From
Ref. [33].

4.1 Boundary lubrication

Boundary lubrication refers to a situation in which most of the lubricant has been
squeezed out of the contact and the remaining lubricant glassifies. It usually
occurs in a mechanical contact under high load and low speed conditions. In the
extreme limit, only a few atoms remain in the contact. But even a few atoms
alter dramatically the friction between two surfaces.

Since in most cases lubricants are only weakly bonded to surfaces, the most
commonly used form for the lubricant-lubricant and lubricant-wall interactions
are Lennard Jones (LJ) potentials. LJ potentials reflect the important effect
that atoms attract when separated by a sufficiently large distance, but repel and
behave like hard disks in the presence of a large external pressure.

It has been shown in a series of molecular dynamics simulations [27, 38, 39, 40]
that the presence of a small contamination layer even as thin as a sub-monolayer
leads to static and kinetic friction between two incommensurate surfaces. Within
the model calculations the two walls would have had zero static friction if no
weakly bonded molecules had been introduced into the interface. As argued
above, the weakly bonded atoms are able to accommodate the surface roughness
of both confining walls simultaneously, which makes the walls lock together.
Of course, in order to obtain not only static friction but also non-zero kinetic
friction, it is necessary for the atoms to exhibit mechanical instabilities, see
section 2. Whether or not the atoms experience instabilities may depend on
the special properties of the system such as dimensionality and symmetry of the
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Figure 7: Left: Kinetic shear stress 7, as a function of normal pressure for
different velocities. The data of data like that on the left was fitted to Eq. (6).
Right: The resulting fit parameters a (top) 7o (bottom). From Ref. [40]

confining walls and their relative orientation, the details of the lubricant wall
interactions such as the sign of the first higher harmonic, and further details.
Fig. 2 suggests that there are more instabilities present for incommensurate
surfaces than for commensurate surfaces in the smooth sliding regime where
the pulling spring is hard, while in the stick-slip regime (small values of k) the
upper wall in the commensurate case experiences instabilities as a whole owing
to geometric interlocking.

The microscopic friction-load relation for boundary-lubricated flat surfaces
turns out to be similar to that of Amontons’s macroscopic friction law F' = yL,
or a simple generalization thereof, namely

(6)

where 1, = F}, /A is the (kinetic) shear pressure, 7o an adhesive offset, and a a
constant that can be associated with the friction coefficient p if the externally
imposed normal pressure p; = L/A is distinctly larger than 79. A nearly linear
relation between 7; and p can be observed over a wide range of pressures, which
is shown exemplarily on the left-hand side of Fig. 7 for the case of smooth sliding,.

It is interesting to analyze the velocity dependence of the coefficients 7
and «, which is shown on the right-hand side of Fig. 7. In agreement with
Coulomb’s observation, the kinetic friction force Fj, is barely sensitive to the
sliding velocity v: The parameters a and 7y only vary logarithmically with v.
The overall decrease of 75, with v can be associated with thermal activation and
diffusion of the lubricant atoms out of their metastable traps [40], confirming
previous interpretations of simple rate-state models of friction [41].

Tk = To + QplL,
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4.2 Hydrodynamic lubrication and its breakdown

When the contact geometry and the operating conditions are such that the load
is fully supported by a fluid film, the surfaces are completely separated. This is
generally referred to as the hydrodynamic lubrication and can be well described
in most cases by Reynold’s equation. When the surfaces are easily deformable, as
in rolling contact bearings or human and animal joints, the equations of elasticity
and the pressure dependence of lubricant dependence must also be included in
the solution of the problem [42]. The hydrodynamic or elastohydrodynamic
continuum theory begins to break down as atomic structure becomes important.
A general assumption of continuum theories is the stick condition of the lu-
bricant near a solid wall, that is to say, the tangential velocity of the fluid at
the fluid wall interface is set equal to that of the wall. When two surfaces come
closer and the confinement is increased, slip can occur at the interface. It is
then convenient to introduce a slip length S into elastohydrodynamic contin-
uum calculations. S represents the distance into the wall at which the velocity
gradient would extrapolate to zero. The calculation of slip length from velocity
profiles has some ambiguity. The least ambiguous resolution to the definition
of slip length may be given in Ref. [43]. Additional effects due to increasing
confinement have been discussed at the beginning of this section 4. A more
thorough discussion of the literature on atomistic simulations in the hydroelas-
tic lubrication regime is given in Ref. [10]. Some technical issues relevant to the
thermostatization of lubricants will also be given below in section 5.5.

5 Setting up a tribological simulation

5.1 The essential ingredients

When designing a computer simulation of tribological phenomena, one needs
to model (i) the physo-chemical properties of the two materials in contact and
the lubricant or the atmosphere involved, (ii) the initial conditions/geometry
and (iii) in addition to what needs to be specified in an equilibrium simulation,
the driving device. Let us assume that we do have a model for the interac-
tions between the atoms involved in the simulation. We then need to set up
Newton’s equations of motion for the various degrees of freedom and integrate
these equations of motion just like in a computer simulation of an equilibrium
system [14, 44, 45].

The relevant degrees of freedom are: The center of mass of the confining
top and bottom solid Ry 3, the coordinates r of those atoms which are coupled
directly to the confining solids (typically the atoms in the outermost layers),
and the coordinates x of all other atoms, which may include lubricant atoms
and additional wall atoms that do not belong to the outermost layers.

A quite general form to treat the driving device is to keep the substrate fixed
(Rp = const) and to couple the center-of-mass coordinate R; of the upper solid
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to an externally driven harmonic spring as shown schematically in Fig. 1. The
equation of motion for the top wall then reads:

MR = K (R) —Ry) + F; (Ry, {r}). (7)

Here My denotes the inertia of top solid, K is the stiffness of the spring that
couples the solid to the driving device RY. In most cases, K is a diagonal matrix,
with three independent components that reflect the normal coupling, and the
coupling parallel to the two interfacial directions. Two popular choices for RY
are

vgeyt ‘tribological’ driving
RO = R?,yey-’_R?,zeZ + (8)
AR} ,e, cos(wt) ‘rheological’ driving

with e, a vector of dimension unity pointing in « direction. Here, v, corresponds
to the average sliding velocity of the upper wall if the spring (see Fig. 1) is pulled
at constant velocity, and Ang and w are the amplitude and frequency of the
driving device if the response of the system to oscillations is probed. Despite
the simplicity of equations (7) and (8), it is important to realize the implications
that various choices can have. This issue is discussed further below in section 5.4.
We still need to specify the coupling F; (Ry, {r}) between the coordinates of
the top solid R; and the atoms belonging to the uppermost layer. The discussion
is of course equivalent for the bottom wall, even though one usually does not
move its position Ry. It is convenient to define equilibrium positions r of atom
n in the uppermost layer relative to the top solid under the condition that no
other atoms are present in the simulation. The equilibrium positions r will
then always have the same relative displacement Ar? with respect to the top

solid, thus
r0.(t) = Ry(t) + Ar), (9)

where periodic boundary conditions are usually employed only in directions par-
allel to the interface. The real position of atom n will then couple to its equi-
librium position. To lowest order this coupling can be considered harmonic and
the force that the ideal lattice point exerts on an atom of the outermost layer
can be written as

fin =~k [ra(t) -1y (1)] - (10)

k is again a matrix in the most general case and the actual choice of & is in
principle highly non-trivial. To a large extent, k reflects the elastic properties of
the top solid, see the discussion of the choice for % in section 5.6. Since f; ,, is
the force that the equilibrium site and hence the top solid exerts on atom n, we
can finally write down the expression for the last term on the right-hand side of

Eq. (7):
F, (Ry, {t}) = =) fin. (11)
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As a next step, one has to specify the interactions between atoms within the
uppermost layer. A reasonable choice is to do this is again within the harmonic
approximation, thus

1 [¢7 [e% a
Vi = 3 Z ang, (ré —ri®) (2 = 11P), (12)

n<n’ «a,B

with r% being the a’s component of the vector r,,. Note that the force constants
kzg, do not only approximate the direct interactions between the atoms in the
uppermost layer, but they are effective quantities which may also contain infor-
mation of the elastic and geometric properties of the top solid. A more detailed
discussion is given in section 5.6.

Lastly, the particles in the outermost layer must also be coupled to the re-
maining atoms in the simulation cell, for instance to lubricant atoms or those
wall atoms that are not coupled to specific lattice sites. If the forces between
wall atoms with coordinate r,, and remaining atoms with coordinates x; are
given by fy,(rg, x,), then the net force f,, on atom n in an outermost layer is
given by

fo=font > > ek (18 =18 ) + 3 fuk(en, x), (13)
k

n'#n o,

where the sum in the last term on the right-hand-side of Eq. (13) includes all
atoms that do not belong to the uppermost layer. All other interactions, i.e.,
those in between lubricant atoms or between slider and substrate atoms, should
be treated just like in equilibrium simulations of materials [44].

5.2 Physo-chemical properties

The physo-chemical properties of the interface are reflected through the choice
of the atomic model potentials. One needs to specify the intrebulk and the
interbulk atomic interaction potentials as well as the interaction of a lubricant
or another adsorbed atom with all other atoms. Intrebulk properties are often
modeled as entirely elastic, i.e., atoms belonging to one solid are connected to
each other and/or to their ideal lattice site via simple harmonic springs. Such
simplifying modeling will be sufficient if plastic deformation, cold welding, etc.
do not play a significant role in the processes of interest.

Many studies use simple Lennard Jones (LJ) potentials for the interbulk
interactions and the interactions between lubricant and walls. LJ interactions

are given by
12 6
Ojj Oii
V (7“,") EX5r (_z]) — (—“) s (14)
J J l rij i

where €;; and o;; have units of energy and length, respectively. Typically, the
interactions are truncated at a distance rz(;) and shifted in such a way that V (r;;)

19



is continuous at rz(;). There is a lot one can learn from systems modeled in this
way, since LJ potentials are sufficient to describe the generic feature that two
atoms attract each other when they are separated by a long distance, while
they repel upon close approach. Moreover, there is a lot of flexibility in the
choice of the parameters €;;, 0;;, and also the radius rz@. The effect of adhesive

j
interactions can be switched on or switched off depending on the choice of rgc-).

J
A typical choice for rl(;) for which adhesive effects are eliminated is the cutoff in

the minimum of V(r;;), hence rz(;) =218 g;;.

The use of LJ potentials is also widespread in coarse grained models of poly-
mers. Simulations of friction between polymer bearing surfaces, i.e., simulations
of shear forces between polymer brushes, are done in terms of bead-spring mod-
els [46, 47, 48] In bead-spring models, all interactions between polymer segments
consist of LJ interactions and additional non-linear potentials keep the segments
bound together [49]. Note that the effect of a good or a bad solvent can be
included into such a coarse grained model via the choice of cutoff radius r(¢) and
temperature 7', making it possible to access distinctly larger length and time
scales than if all atoms had been included explicitly into the simulation.

Often, one tries to understand the friction between two specific solids. In such
a case, LJ potentials are usually not sufficient and more realistic descriptions are
required just like in an equilibrium simulation. Many materials show complicated
surface reconstruction after cleavage, which often alters surface properties and
hence friction dramatically. This concerns metals, whose surface cannot be de-
scribed accurately in terms of simple two-body potentials. A popular choice for
the simulation of metals are so-called embedded atom potentials. Usually, lay-
ered materials and carbon nanotubes cannot be modeled with simple two-body
potentials either and more realistic description are required, see Refs. [44, 50]
and references therein for a more detailed overview of empirical many-body po-
tentials.

5.3 Initial geometry

The frictional properties of a slider-substrate system do not only depend on
the chemical nature of the two solids, the lubricant, and the thermodynamic
conditions such as temperature, normal pressure, etc., but also on the way in
which the system is initially set up. Most simulations of friction take place
between two flat surfaces, as shown on the left-hand side of Fig. 8, while most
well-controlled experimental single asperity contacts employ curved tips, either
an AFM tip scratching over a smooth substrate or two crossed mica cylinders in
SFA experiments. A geometry with similar contact mechanics as those occurring
in AFM or SFA experiments is shown on the right-hand side of Fig. 8.

There are many processes that can differ qualitatively as a function of the
initial geometry, because of the differences in the distribution of the normal
stress in the contact. One obvious example is the squeeze-out dynamics of a
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Figure 8: Schematic representation of initial geometries. Left: Flat surfaces.
Middle: Blunt tip on substrate. Right: Curved tip on substrate.

fluid lubricant when the asperity approaches the substrate [52]. But also the
dry friction depends strongly on the geometry. For flat, disordered surfaces,
there is a well-defined friction coefficient pg, which however, decreases with the
area of contact A. This is shown on the left-hand side of Fig. 9. In the case
of a dry, curved tip, Fs depends only linearly on L if tip and substrate are
commensurate, which is shown on the right-hand side of Fig. 9. The presence of
a few contaminating or lubricating atoms changes these dependencies again.
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Figure 9: Left: Static friction coefficient us = F;/L as a function of interface
size A for flat, amorphous walls with different degrees of contamination. From
Ref. [27] Right: F} as a function of load L for a curved tip (commensurate, amor-
phous, and incommensurate) on a crystalline substrate. Right: From Ref. [51].

Only the quartz crystal microbalance (QCM) [53], which enables one to mea-
sure the viscous friction between an adsorbate layer and a smooth crystalline sur-
face does not incorporate curved surfaces. However the simple scaling arguments
presented in section 3.2 show that the processes and the potential instabilities
occurring in QCM experiments are likely to be different from those occurring
between two three-dimensional solids.

Before setting up the simulation it is advisable to consider whether surface
curvature plays an important role in the process of interest. However, one needs
to be aware that the computationally feasible radii of curvature R, are distinctly
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smaller than experimental R.. Employing curved surfaces also reduces the real
contact and thus produces computational overhead outside of the contact. More-
over it would be advisable to do simulations for different R, and to test whether
scaling arguments to extrapolate to larger R, can be employed.

5.4 Driving device

There are many ways in which the solids can be coupled to a driving device. A
rather generic way is to couple the upper wall to a spring that is moved according
to a well-described procedure, i.e. rheologically or tribologically. The scenario
is visualized in Fig. 1 and described in more detail in between Egs. (7) and
(11). The use of one simple spring K is a simplistic way to model not only the
experimental driving device, but to some degree also the elasticity of the slider.

There are two important limits for the value of K. One limit is to use an
infinitely weak spring K — 0 and to set the (hypothetical) position of the driving
device a distance AZ away from the actual position of the top wall such that
KAZ = L. This mode is equivalent to impose a constant force and is frequently
used to drive the system in the direction normal to the interface, in which case
L corresponds to the load. It was shown that small normal spring constants K
result in smaller friction forces than if the system was driven with large K, at a
given average load L [54]. The reason is that the slider has more possibilities to
cross energy-barriers if the spring is weak and hence the slider chooses the path of
minimum resistance. Of course, in terms of implementing the condition normal
load, one would replace the first term of the right-hand side of Eq. 7 simply
with the externally imposed load L. The other limit is K — oo, in which case
the position of the top wall Ry is identical with that of the driving device RY.
For tribological driving, this typically implies a constant sliding velocity mode
for the lateral motion and in case of zero normal velocity a constant separation
constraint. The effects of the lateral spring constant on the average friction has
already been discussed in the simple case study of section 1.1.

The driving device can have different modes in different directions. A natural
choice would be to apply a constant load mode in the normal z-direction, while
the slider is pulled with a weak spring parallel to the z-axis, and coupled to
another non-moving spring in y direction.

5.5 Thermostating

Most experiments are conducted in such a way that, far away from the sliding
surfaces, constant temperature is maintained. The heat produced in the sliding
process is conducted away from the interface via phonons and in the case of
metals heat dissipation also occurs via electrons. One can mimic the effect of
heat conduction in a simulation by employing thermostats or heat baths similar
to those used in equilibrium simulations. However, there are a few additional
difficulties in a non-equilibrium simulation involving sliding surfaces.
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(i) There is no well-defined frame of reference. (ii) The driving device does
work on the system. The final thermal energy or temperature and thus the
system’s properties will depend on the rate with which energy is pulled out
of the system. In equilibrium simulations, static properties including thermal
energy do not depend at all on the strength of that coupling and dynamical
properties should depend only little on the coupling to the heat bath.

These three difficulties can be easily overcome if certain rules are respected.
(i) Only the outermost layers should be thermostated and thermostatization
should take place within the frame of reference defined by the motion of R;. Al-
ternatively, dissipative particle dynamics (DPD) [55] may be used to thermostat
locally in the center-of-mass system of two neighbored wall atoms. DPD ensures
that the Gibbs distribution is recovered as the stationary solution to the Fokker-
Planck equation. As compared to regular Langevin-type thermostats, DPD is
more difficult to implement and slightly more CPU time intensive. However,
it has the distinct advantage to act only on a local scale. In some cases, one
may also want to use a DPD thermostats within the lubricant, for example to
mimic the effect of collisions with solvent atoms that are not simulated explicitly,
but only taken into account via effective interactions. If implemented correctly,
Navier-Stokes coeflicients are recovered in the hydrodynamic limit [56]. (ii) In
extreme conditions, the effects of heating cannot be neglected any longer. One
possibility is to define the thermostat’s coupling strength such that the heat flow
into the thermostat corresponds approximately to that which one would have if
the system was made infinitely large normal to the interface (size consistency).

5.6 Methods to treat the wall’s elasticity

From a computational point of view, we do not want to spend most of the CPU
time with the simulation of the bulk in order to reproduce the proper elastic be-
havior. However, the discussion above shows that a proper description of elastic
effects may be crucial. If we only couple the atoms to the equilibrium sites, we
suppress elastic deformations and as a consequence unrealistic pressure profiles
in the contact may be obtained. On the other hand, we do not want to neglect
the effect of long-range elastic interactions by simply connecting the surface
atoms with effective springs. This would favor elastic long-range deformations
in an unrealistic way and thus make possible elastic instabilities.

It is possible to reproduce the bulk’s proper static, elastic response by a
suitable choice of the coefficients k in Eq. (7) and kgﬁ, in Eq. (12), because all
harmonic modes can be integrated out in principle. The treatment can even
be generalized to a dynamic response in terms of Green’s functions [57]. Such
sophisticated treatments, however, are very demanding in several aspects, and
simplifying procedures are pursued in practice. The easiest approach is to treat
the bulk’s elasticity in a mean-field approximation, in which case one only needs
to define the coupling strength k of a wall atom to its ideal lattice site. From
the scaling arguments in section 3.2, one may withdraw that k£ would only have
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a well-defined value in the limit of the slider’s linear system size L, if the spatial
dimension dyp; of the slider is larger than two. In d = 2, the proper mean-field
choice for k would be k o< In L.

A good compromise is to use elastic coupling to the ideal lattice site and next
neighbor coupling. Such a model is not only an interesting generalization of the
Prandtl-Tomlinson model for the analysis of dry friction [58], but also useful for
computer simulations involving lubricants, because the lubricant gets squeezed
less easily through the confining walls. For flat surfaces, one may use simple
harmonic springs. If one of the two surfaces is curved as shown in Fig. 10,
then the harmonic springs have to be replaced with anharmonic interactions:
Within the radius of contact r., the normal deflection §z(r) of the tip atoms
with respect to an uncompressed tip is proportional to r2, where r represents
the lateral distance from the center of the tip. In order to reproduce the proper
Hertzian contact profile p; oc (r — r.)3/? for a tip pressed against a hard but
non-adhesive substrate, the normal restoring force f, to the lattice site must be
chosen according to [51]

f1(02z) =+/02/R. ALK, (15)

where R, is the tip’s radius of curvature and A, the surface area per atom repre-
sented in the surface. Note that this procedure does not impose Hertzian contact
mechanics, but the final pressure distribution depends among other things on
the adhesive interaction between tip and substrate.

f coupling to

: lattice site
; coupling to
J<— next neighbor

¢ S ,@/® atomic equilibrium
substrate%@

oo @< position for free tip

Figure 10: Schematic representation of elastic interactions within a soft tip
pressed on a hard surface. Both couplings can have one component normal to
the interface and two transversal components.

5.7 Calculation of the friction force

There are various ways to calculate the kinetic friction force. Using the notation
introduced in section 5.1, one can measure the force that the external driving
device exerts on the wall atoms, i.e., K (R} , — Ry ) with z the sliding direction,
or alternatively the total force that the top-wall atoms exert on their equilibrium
positions, i.e. the projection of ), f; ,,, see Eq. (10), onto the sliding direction.
We may also sum up the force between top-wall atoms and all other atoms to ob-
tain the friction force. The different ways should be identical since otherwise the
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top wall would be accelerated. The argument for the equivalence of the different
ways to calculate the friction force breaks down when the surface experiences
a time-dependent external force as is the case in the rheological driving mode.
This issue has been discussed in detail in Ref. [11] within the Prandtl-Tomlinson
model.

In the absence of thermal fluctuations, static friction Fy is defined as the
maximum external shear force necessary to invoke lateral sliding. In order to
calculate F}, one can ramp up an external force arbitrarily slowly Fix () = Fexet
and identify the time tqep when the system depins and starts sliding. F; can
then be associated with Fexy(tqep). At finite temperature, the precise value
of F, will depend on the rate Fi. Near the depinning threshold, thermal
fluctuations will assist the system to overcome the barrier and small corrections
to Fy, approximately in the order of In Fi, will presumably apply, similar to the
kinetic friction in the Prandtl-Tomlinson model or boundary lubrication [40].

5.8 Interpretation of time scales and velocities

The interpretation of the length and time scales in a computer simulation be-
comes important when comparison is made to experiment. The length scale is
defined in a computer simulation through the size of an atom with a typical
radius of about 1.5 A. The definition of the time scale is much less clear cut.
According to the international system of units, a second is defined as the dura-
tion of 9.19210° and a few periods of a particular vibration of the isotope 133Cs.
However, the physics of this vibration is completely irrelevant in a tribological
context and a different definition of time scales will be more appropriate. This
definition will depend on the particular problem. In the following two exemplary
discussions, it will be assumed implicitly that there is a time-scale separation
between the vibronic motion of the atoms and all processes requiring thermal
activation.

Let us first consider the case of dry friction, i.e., an AFM tip in contact with
a substrate. Eq. (2) is then frequently used to model phenomenologically the
results of a real experiment or of a computer simulation. If we carry out a sim-
ulation of a specific experiment and use realistic model potentials, then we will
withdraw a similar value for the tip-substrate interaction strength fo from the
simulation as from experiment. We might also be successful in reproducing the
rate 7 with which energy is dissipated and the (effective) coupling strength &
between tip and driving device. However, in almost all cases, we will not assign
the experimental device/tip mass mexp to our top wall, but a mass mgim that is
many orders of magnitude smaller. This means that the relevant frequencies de-
fined either via \/k/m or via 4/ fo/m are also many orders of magnitude smaller
in experiment than in the simulations. Thus, in order to compare to experiment
our velocities need to be scaled by a factor y/mMexp/Msim and comparing absolute
velocities would be meaningless.

Let us next consider the case of two boundary lubricated surfaces under
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shear. The film confined between two surfaces is interpreted as a glassy state,
which is able to accommodate the atomistic surface corrugation of both walls
simultaneously. After a typical relaxation time 7, a lubricant atom will undergo
thermally activated motion, which eventually leads to lateral creep motion of
the slider. In correspondence to the concept of the Deborah number D, which is
defined as time of relaxation 7 divided by the time of observation At, one may
expect the friction force to depend on the ratio of 7 and the time At necessary
for the slider to move laterally a typical atomic length scale Al = At/v. A
distinct advantage of computer simulation is that one can alter the Deborah
number at will either by varying 7 via the normal pressure or via a change in
sliding velocity v.

6 Conclusions

This contribution is meant as a guideline for setting up a meaningful simulation
of frictional processes. To do this successfully, it is helpful to have both a good
understanding of the underlying theoretical approaches and the knowledge of
recent advances in numerical algorithms.

Understanding the underlying theoretical ideas is important in order to pre-
vent the simulations to be meaningless when we want to compare our results to
experiments. After all, the goal is to interprete and to understand experiments.
Since it is unfeasible to treat all relevant degrees of freedom in a simulation, we
are forced to make a model before we carry out the simulation. In my opinion,
there are two classes of mistakes that one can make, one class is due to reduc-
tional modeling while the other class is due to fictitious modeling. Reductional
modeling means that we have not captured all aspects of the system, but what
we simulate is at least part of the fuller picture. Fictitious modeling includes
a (friction) mechanism that is not relevant in experiment but arises as a con-
sequence of our model. For instance if the walls are described as elastic media
although plastic deformation can occur and be a relevant contribution to the net
friction, then we see a reduced part of the full picture. An example for fictitious
modeling would be a simulation in which long-range elastic interactions are ne-
glected and elastic instabilities occur, although they might only play a minor
role in the real system and not contribute to friction. The following remaining
compilation of recommendations summarize many aspects of this chapter.

The cardinal and frequently encountered mistake is the use of commensurate
surfaces. Even if there is ‘stuff’ between the surfaces, there will always remain
some finite (artificial) resistance to the initiation of sliding. The reason is that
commensurability breaks translational invariance in a very specific way. It is cer-
tainly true that the effect often becomes negligibly small if the distance between
the walls is sufficiently large. It has yet been shown that not only fluids but even
a gas can pin two commensurate solids even if they do not interact directly with
each other [39]. Similar comments apply to the simulation of friction between
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walls that have dense Langmuir-Blodgett type layers grafted onto them. The
atomistic processes occurring between commensurate layers in simulations will
be strikingly different from those between non-matching surfaces in experiment.

The presence of a few adsorbed atoms on surfaces most always also alters
the tribological behavior qualitatively. This concerns in particular reactive and
reconstructing surfaces that have much higher friction in UHV than in ambient
conditions. In the other extreme, when two (flat) surfaces in contact are believed
not to deform irreversibly at all, then sliding in UHV will mainly be opposed by
a drag force. In this case, an adsorbed layer will be responsible for a dramatic
increase in solid friction.

Other issues discussed in this chapter include the effect of wall curvature and
initial geometry, the effects of long-range elasticity, the importance of properly
implementing the driving device (artifacts due to constant separation and con-
stant, sliding velocity constraints), and thermostats that allow to transport heat
away from the interface in a non-equilibrium situation. Concerning all these
aspects, one should of course attempt to mimic the experimental situation as
closely as computationally feasible. In some cases, however, it is advantageous
not to mimic experiment. For instance, if the mass of the slider is small in the
simulation, the gap between the macroscopic processes and the microscopic mo-
tion is reduced. This makes it sometimes possible to simulate processes on rather
small time scales that occur only on macroscopic time scales in experiment.

Multi-scale techniques that have been used in simulations of fracture like
in Ref. [59] will certainly prove valuable in friction simulations as well. These
techniques combine ab-initio, atomistic, and coarse-grained modeling within one
simulation. In particular, the simulation of an AFM tip substrate interaction
seems to be a well-suited problem: The intimate contact can be modeled in
terms of ab-initio, the area further outside with an atomistic description, and
the proper contact mechanics can be guaranteed with continuum methods for
the areas even further away from the intimate contact.
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