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Previous molecular dynamics simulations of friction between polymer brushes in relative sliding motion
[Kreer, T.; Müser, M. H.; Binder, K.; Klein, J. Langmuir 2001, 17, 7804] are extended beyond steady-state
conditions. We study two different protocols: (i) stop and return and (ii) stop and go. In protocol (i), the
relative, lateral motion between the two surfaces is stopped abruptly and reimposed opposite to the initial
direction after the system could relax for some time. Protocol (ii) is similar except that the sliding direction
is maintained. In the constant-velocity steady state, the average lateral extension lc of the polymers is
found to be a power law of the sliding velocity v, namely, lc ∝ v0.3. When the sliding direction is inverted,
a shear stress maximum is observed after the two walls have slid a relative distance of 2lc. This maximum
occurs when the average inclination of the polymers is 90°, and it is accompanied by brush swelling. In
protocol (ii), no brush swelling is found and shear stress maxima are absent in the itinerant stages of the
go phase, with the exception of large v. We conclude that dissipation mechanisms for oscillatory shear are
similar to those for constant-velocity sliding if the driving amplitude A distinctly exceeds 2lc. Moreover,
enhanced loss at A ≈ 2lc is not necessarily related to stick-slip motion.

I. Introduction

The present study, which is an extension of previous
molecular dynamics simulations,1 is motivated by the
desire to better understand friction between two solid
surfaces bearing polymer brushes in good solvent condi-
tions. Revealing the atomistic origins of friction and
lubrication in such systems is an active field of research
both experimentally and in terms of computer simulations;
for reviews, see for instance refs 2 and 3. The pioneering
experiments by Klein et al.4,5 of surfaces bearing polymer
brushes showed strikingly small effective, kinetic friction
coefficients µ (as defined by the traditional equation µ
equals friction force divided by load) in the steady-sliding
regime. Computer simulations by Grest confirmed the
intuitive picture that sliding-induced chain “stretching
and disentanglement” of the polymers is responsible for
the small values of µ.6 Since chains that are as short as
those commonly used in computer simulations cannot
entangle,7 it might be more appropriate to relate this
extreme shear thinning to “stretching and inclination”

and a concurrent decrease in the mutual overlap between
the polymer brushes.1

The above-mentioned studies on friction between
brushes address stationary sliding, and a clear, qualitative
picture has emerged for steady-state friction between
brushes in good solvent conditions. However, oscillatory
driving and the crossover behavior between two different
sliding states are certainly also important to study, in
particular as little is known about the atomistic processes
occurring under oscillatory shear or during nonstationary
driving. To the best of our knowledge, most numerical
studies focus on normal forces rather than lateral forces.
For example, Doyle et al.8 investigated brush swelling in
order to explain the experimentally observed increase in
thenormal forces;5 however,nodetailed,atomisticanalysis
of the interplay between rheology (interdigitation, incli-
nation, end-to-end distance, etc.) and shear forces is known
to us for our system of interest.

Experimental studies by Granick, Cai, and co-work-
ers9,10 employing oscillatory shear between brushes under
near theta-solvent conditions suggested that there are
regimes of enhanced dissipation for certain driving
amplitudes at fixed frequency or, alternatively, enhanced
dissipation for certain frequencies at fixed amplitudes. In
linear response, such enhanced dissipation can be related
to an (approximate) coincidence of relaxation times and
inverse driving frequencies.11 Zaloj et al. suggested an
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alternative mechanism for the occurrence of enhanced
dissipation.12 Taking into consideration the elastic cou-
pling of the driving device to an embedded (frictional)
system, they showed that stick-slip motion can occur at
intermediate driving amplitudes A, which would then
explain the observed enhanced dissipation. Both at small
A and at large A, friction would be smaller, because the
embedded particle’s motion is smooth in either limit. Zaloj
et al. supported their claim by studying a simple linear
molecule, embedded between two shearing plates. While
Zaloj et al.’s scenario for enhanced dissipation is certainly
legitimate, it is not necessarily the relevant mechanism
for our system of interest and a more accurate model is
needed to clarify the mechanism.

Another important study on itinerant effects in good
solvent conditions was reported by Tadmor et al.13 They
studied the effect of waiting time on the itinerant friction,
once sliding was reinitiated in the direction opposite to
the initial sliding direction. They found an increase in
friction with waiting time and argued that this increase
is due to the mutual interpenetration of the brushes, which
increased with increasing waiting time.

In this paper, we intend to contrast rheological and
tribological properties for stationary and nonstationary
sliding of polymer brushes in good solvent conditions. As
in our preceding paper, special emphasis is placed on the
interplay between shear forces σbr and the mutual brush
interdigitation. Nonstationary sliding is realized in two
different manners, namely, protocol (i), “stop and return”,
and protocol (ii), “stop and go”. In both modes, we start
from steady-state sliding at velocity v and bring the
relative, lateral motion of the two confining walls to an
immediate stop. The system can then relax for some time
trel. In most cases, we chose trel larger than the time that
σbr needs to decay to zero within statistical uncertainty.
Sliding is then reinitiated with the same absolute velocity
as before, which is (i) opposite to or (ii) along the old sliding
direction.Suchaprotocolwill allowustoperformadetailed
investigation of the transient behavior that occurs after
relaxation and/or after inversion of v.

One of the goals in this study is to analyze the effect of
nonstationary sliding on the interdigitation I of the
brushes and the concurrent induced changes in the shear
stresses σbr. In ref 1 (Figure 9), we observed a surprisingly
large correlation between I and σbr: the effect on σbr due
to large momentum transfers between monomers at large
sliding velocities was almost exactly balanced by the
inclination of the polymers. As a result, σbr was nearly a
unique function of I within a large parameter space, in
which many parameters were varied significantly such
as grafting density, solvent viscosity, and sliding velocity.
The interplay between interdigitation and shear forces
during nonstationary sliding will therefore also be central
to this study.

The remainder of this paper is organized as follows: In
the following section, the simulation method, the fea-
tures of the model, and the most important observables
are discussed. Section III contains the results of our
simulations. We will first provide information on steady-
state sliding that is complementary to our previous work.
Then, the analysis of shear stress relaxation will be
presented as well as rheological and tribological behavior
when sliding is reinitiated. Section IV contains the
conclusions.

II. Method, Model, and Observables
In this study, we perform standard molecular dynamics

(MD) simulations of a coarse-grained model, which is well
established for the investigation of friction between
polymer-bearing surfaces.3 The polymers consist of bead-
spring chains, where appropriate potentials ensure ex-
cluded volume interactions between the beads as well as
the connectivity along the backbone of the chain. These
potentials are the Lennard-Jones potential

where rc is the interaction cutoff radius, and the finitely
extensible nonlinear elastic (FENE) potential

where R0 ) 1.5σ, k ) 15ε/σ2, and r is the distance between
adjacent particles. ε and σ are characteristic energy and
length scales, respectively. One end of each polymer is
tethered to a random position on one of the two atomically
smooth surfaces. Both surfaces bear the same amount of
grafted polymers. The solvent is not treated explicitly,
but in terms of a Langevin thermostat. Including solvent
atoms would slow the simulations distinctly and prevent
us from accessing the relevant length and time scales. As
done previously, good solvent conditions are mimicked by
the effective interactions between monomers. By choosing
a cutoff radius of rc ) 21/6σ, we allow only for repulsive
interactions. This choice is often referred to as the
athermal case. All data presented in the following figures
are expressed within the Lennard-Jones units of ref 1.
Note that in order to compare our results with experi-
ments, it will be necessary to scale length and time scales
in a meaningful way, because the polymers used in
experiments have a much larger degree of polymerization
N than in our simulations. This issue is also discussed in
more detail in ref 1.

There is one important modification of our simulations
with respect to ref 1. In our previous study, the thermostat
acted within the laboratory system. This created a small
asymmetry in the structures of the two opposing brushes,
because the upper brush was moved and hence dragged
through the solvent, while the lower brush remained fixed
in the laboratory system. In the new series of simulations,
we switch off the thermostat parallel to the shear direction,
because we do not want to bias or to impose any (effective)
solvent flow in the sliding direction. This change has two
additional motivations: First, in our previous work we
overestimated the effect of solvent flow into the brushes,
while in this work we underestimate the flow. If both
methods yield similar results for the rheology and the
tribology of the brushes, one may be confident that there
are no relevant, systematic artifacts. Second, during the
stop phase of our simulations, we want to analyze the
relaxation of the brushes. With our previous choice of the
thermostat, the signal-to-noise ratio is less good and, in
addition, relaxation times are larger than with our new
choice of thermostating only normal to sliding. As it turns
out, however, the qualitative effects of the above-
mentioned alteration on the shear forces between the
brushes are rather minor; merely quantitative details are
affected. This could be expected, because our system is
highly viscous and thus far from a fluid at large Reynolds
numbers, for which this issue would be critical. To avoid
underestimating heat transport, we leave the thermostat

(12) Zaloj, V.; Urbakh, M.; Klafter, J. Phys. Rev. Lett. 1998, 81, 1227.
(13) Tadmor, R.; Janik, J.; Fetters, L. J.; Klein, J. Private com-

munication, 2002.
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switched on in the directions normal to sliding. A more
detailed discussion is given in section III.A.

The grafting densities Rg employed in this study range
between 1.9 Rg

/ and 2.5 Rg
/, where Rg

/ ) 1/πRgyr
2 denotes the

critical grafting density and Rgyr is the radius of gyration
of a single free chain in solution. At Rg

/, chains are starting
to overlap which leads to stretching of the polymers
perpendicular to the walls. The simulations of this study
are carried out in a regime of large compression. The
dependence of the normal stress σN on the distance D
between the surfaces can be approximated rather well by
a power law σN ∝ (NRg/D)4.2, which is shown in Figure 1.
This empirical exponent agrees rather well with the
situation encountered experimentally, although here the
brushes are only compressed by about a factor of 2-3
with respect to the unperturbed brush. This is much less
than typical experimental compressions, but owing to the
relatively small degree of polymerization in the simula-
tions, we obtain the correct scaling at smaller absolute
values of the compressions than in experiment.

Most of our simulations are done in the regime marked
by the arrow in Figure 1, where 30 e N e 60, 1.9 e Rg/
Rg
/ e 2.5, and D ) 17.5, unless mentioned otherwise.

Despite the relatively strong increase of σN with increasing
effective density NRg/D, it is not yet possible to define
static friction in a meaningful way. The reason is that the
lateral motion between the walls behaves as diffusive or
subdiffusive when no external shear force is applied to
the system.

Using the units of ref 1, the smallest shear velocity v
) 0.01 used in this study corresponds roughly to v ≈ 1
m/s. It is necessary to keep in mind that the comparison
of absolute velocities between simulations and experi-
ments is often rather meaningless within a tribological
context. Instead it is more meaningful to compare results
in which the ratios of characteristic distance and char-
acteristic time are similar.14 Characteristic times increase
with N rather rapidly, and as a consequence our results
shall be compared to experimental sliding velocities much
smaller than 1 m/s, because experimental values for N

are usually distinctly larger than those used in the
simulations (namely, N ) 30-60 effective segments).

Figure 1 also includes information on the mutual
interdigitation of brushes in thermal equilibrium, which
turned out to be a central quantity in our preceding work.
We specify the amount of interdigitation using two
different observables, namely, the number of interactions
Nint and the overlap integral I. Nint is counted by adding
up the number of pairs of monomers where the two
monomers belong to different brushes and where the
distance between the monomers is smaller than a char-
acteristic, atomic-scale distance rc. We chose rc to be
identical with the cutoff radius of the potential, which is
slightly larger than the separation between two adjacent
monomers on the polymer backbone. Nint can be written
as

where rij denotes the separation between monomer i and
monomer j, and Θ is a step function, which is 1 if its
argument is negative and 0 for a positive argument. The
definition of Nint differs slightly from the one given before
in eq 10 of ref 1. The overlap integral I is defined as the
integral of the product Fub(z)Flb(z) over z, where z denotes
the coordinate normal to the interface and Fub(z) and Flb(z)
denote the monomer density of the upper and lower brush,
respectively. To a good approximation, Nint is proportional
to I. For our data related to D ) 17.5 and Rg/Rg

/ ) 2.5, we
find Nint/A≈825I. Including an offset and a term quadratic
in I improves the fit by less than 5%.

The other central quantity of this study is the shear
stress σbr between the brushes. This observable is evalu-
ated directly at the interface of the two grafted layers,
thus

where A is the area of contact and F|(rij) is the force between
monomers parallel to the sliding direction. Equation 4
allows us to calculate nonstationary shear stresses with
much higher sensitivity as if σ was evaluated at the
confining walls, because the signal is smeared out less. In
the case where one calculates the friction at the wall, one
has to sum up the forces between the particles constituting
the embedded system and those constituting either the
upper wall or the lower wall. This means that in eq 4 the
index i would run over all monomers and index j would
run over all wall atoms. In steady-state sliding, the
resolution of σ does not depend on the way in which σ is
determined. As just mentioned, evaluating shear at the
wall leads to a signal which is smeared out more than if
the shear is evaluated directly between the two brushes.
Due to the much smaller sliding velocities in experiments,
the smear-out effect must be smaller than in our simula-
tions, where run-time effects play a more significant role
than in typical experimental situations.

III. Results
A. Steady-State Sliding, Revisited. One important

modification of our simulations with respect to our
previous investigation1 of shear stresses between poly-
mer-bearing surfaces at constant velocity concerns the
thermostat. Here, it no longer acts parallel to the sliding
direction, which we always chose parallel to the x-axis. As(14) Müser, M. H. Comput. Phys. Commun. 2002, 147, 83.

Figure 1. Normal stress σN as a function of an effective density
NRg/D between the two confining walls for different degrees of
polymerization N and grafting densities Rg. The arrow encom-
passes the regime of the shear simulations presented below.
The dashed line reflects a power lawD-4.2. Inset: Surface density
of the number of interactions per area Nint/A as a function of
the scaled inverse separation. Nint counts the number of
interactions between monomers belonging to the upper brush
and monomers attributed to the lower brush.

Nint ) ∑
i∈lower brush
j∈upper brush

Θ(rij - rc) (3)

σbr )
1

A
∑

i∈lower brush
j∈upper brush

F|(rij) (4)
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discussed in the Introduction, this means that we now
underestimate the solvent flow into the brushes while we
overestimated it in our preceding study. We will show
here that this change does not have qualitative implica-
tions for the shear forces between the brushes and that
the rheology of the brushes is altered only slightly. More
importantly, we will also alter the degree of polymerization
and grafting density to see how these parameters affect
the shear forces between the brushes.

The shear alignment of the polymers, as shown by a
snapshot in Figure 2a, is now entirely induced by the
brush-brush interaction, while it was also induced
through the solvent flow before. Increasing the sliding
velocity reduces the mutual brush interpenetration. This
can be seen in Figure 2b, which contains the density
profiles of the individual brushes for different sliding
velocities. The folded density profiles Flb(z)Fub(z) now can
be approximated rather well by a Gaussian exp[-(z/D -
0.5)2/δ2] as demonstrated in Figure 2c.

Due to the altered thermostat, the folded density profiles
are now much more symmetric than previously; see Figure
7 in ref 1. Another difference concerns the folded density
profile in the middle of the interface z ) D/2, which
decreases considerably less with increasing shear velocity
than in our previous treatment. Despite these discrep-
ancies, important results remain unaltered. In particular,
the shear stress between the brushes decreases with
increasing shear velocity, as shown in the inset of Figure
2b. Also, the large correlation between overlap and shear
force persists in our new treatment, which is demonstrated
in more detail in Figure 3, where we also varied the degree
of polymerization N as compared to our previous study.
The coupling of the brushes to the solvent is treated like
in our previous approach within one data set of Figure 3,
but the corresponding data fall on the same curve as the
new data. Only changing the grafting density (in units of
the critical grafting density Rg

/) apparently causes a
significant deviation from the original curve.

The data shown in Figure 3 exhibit an almost loga-
rithmic velocity or shear-rate dependence of Nint within
the limited range of velocities accessible to the simulations,
as shown in Figure 4. This is consistent with the
logarithmic shear-rate dependence of the shear force,
which is discussed in more detail in a separate study by

some of the present authors,15 which focuses especially on
relaxation processes after the sliding motion is stopped
abruptly. Note that the shear forces presented here do
not include the coupling of the brushes to the solvent flow,
as the solvent is not treated explicitly in our study. Thus,

Figure 2. (a) Configuration of randomly chosen polymers at two different sliding velocities projected onto the (xz) plane. (b) Density
profile of upper and lower brush. Inset: Shear stress σbr between brushes as a function of overlap distance δ. (c) Folded density
profile. The lines are fits to the data according to FlbFub∝ exp[-(z/D - 0.5)2/δ2], which defines δ.

Figure 3. Shear stress σbr as a function of brush interdigitation
as measured by the number of interactions Nint. Data from
previous work, in which the thermostat also acted along the
sliding direction (γ ) 2), are included in the figure.

Figure 4. Number of interactions between opposing brushes
as a function of shear rate.
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the experimental verification of the logarithmic shear-
rate dependence of Nint and σbr will be difficult if grafting
densities are small and sliding velocities are large. Under
such circumstances, the measured shear might be domi-
nated by the solvent flow into the brushes.

Of course, the velocity range, in which the logarithmic
behavior shown in Figure 4 can be observed, must be
limited both at large and at small velocities. At sufficiently
small velocities, linear response theory will apply and
hence changes in Nint must be linear in v. We do not have
an estimate for the velocities where the crossover between
the linear response and the logarithmic regime takes place.
At large velocities, Nint must remain positive, and thus
the velocities where the logarithmic dependence of Nint on
v must break down can easily be estimated from Figure
4. The discussion of both limits, v f 0 and v f ∞, relies
neither on brush swelling/shrinking nor on constant load/
separation constraints.

Figures 2-4, which focus on mutual brush interpen-
etration, confirm the validity of the conclusions from
previous works for the new thermostat conditions. How-
ever, as noted in the Introduction, sliding-induced incli-
nation may also be responsible for small friction between
brushes. Figure 2 alludes to this effect. The inclination of
the polymers can be characterized by the projection of the
end-to-end vector of the polymers onto the sliding direction.
This characteristic length lc can be expected to become
important when sliding is reversed, as one has to pull at
least a few times this distance before steady state can be
achieved again. We find that the characteristic distance
shows power-law behavior as a function of sliding velocity,
which will be discussed next. The regime where power-
law behavior can be observed must eventually break down
both at small and at large velocities. At very small
velocities, linear response must be valid and a linear
relation between inclination and sliding velocity follows.
At very large velocities, the chains are fully stretched. In
our model, a strict upper bound for the maximum covalent
bond length is given through the FENE potential.

B. Stop and Return. When the sliding direction is
reversed, chains will have to reorient. After the upper
wall is moved a sufficiently large distance in the new
direction, the chains will be in the new steady state, which
is a mirror image of the original steady state. In between,
polymers must pass through a configuration where the
inclination is 90°, which means that the end-to-end vector
is perpendicular to the walls. The time at which the
expectation value of the inclination is 90° is a characteristic
time, which we call τΦ in the following. Here, we disregard
the spatial extension of the polymer in the y direction,
which always turned out to be small compared to the
steady-state characteristic length lc, with maybe the
exception of the smallest sliding velocities. Alternatively,
one may argue in terms of ensemble averages, in which
case the definition of τΦ can remain the same, while the
first moment of y automatically disappears for symmetry
reasons.

One may estimate τΦ from a simple geometric consid-
eration based on Figure 2a. Imagine a configuration where
the (nongrafted) endgroups of two polymers belonging to
opposing walls are close to each other. The (grafted)
headgroups of the polymers then have a lateral displace-
ment of 2Re cos(Φ) parallel to the sliding direction, which
allows one to define a characteristic length lc ) Re cos(Φ).
One has to pull the upper wall precisely by 2lc, to bring
the two grafted headgroups of the two polymers under
consideration on top of each other, which requires sliding
in the reverse direction for a time 2lc/v. Taking into account
inertia of the chain and/or damping effects, one would

expect 2lc/v to be an upper estimate for τΦ. However,
considering the thermodynamic driving force, which
prefers the (average) end-to-end vector to be perpendicular
to the walls, one would expect 2lc/v to be a lower estimate
for τΦ. If both effects are small or cancel approximately,
one obtains

This estimate turns out to be a surprisingly good descrip-
tion of the correlation between τφ and lc, as can be seen
in Figure 5, where we compare the characteristic length
lc as determined in steady-state sliding with the product
of characteristic time τφ and sliding velocity v of the stop-
and-return protocol.

Over some range of velocities, the characteristic length
obeys a power law lc ∝ v0.3 as a function of sliding velocity,
which is a reflection of the far-from-equilibrium nature
of the simulations. This power-law relation can only be an
approximation within a limited shear-rate window. The
limits of the validity of lc ∝ v0.3 are imposed through the
linear response regime at small shear rates and through
fully stretched chains at large shear rates. While the
exponent 0.3 is not found to be universal, that is, it depends
on N and Rg, it would be interesting to check the power
experimentally. As we will show later, the shear force
maxima occur almost simultaneously with the condition
that the average inclination passes through 90°. Unfor-
tunately, it is not obvious to us what determines the precise
value of the exponent in the power law lc ∝ v0.3. One of the
difficulties in the derivation of this power law would be
the nontrivial dependence of the overlap and hence the
shear force on the relative sliding velocity.

The behavior of the polymer’s inclination during the
itinerant stages of the return phase can be characterized
in terms of a crossover function Cc(t), which we define as

where the time t ) 0 is defined as the moment at which
sliding is reversed, and 〈Φ〉ss denotes an expectation value
in the new steady state. Hence, for an abrupt change of
velocity from -v to v, Cc(0) ) -1 and Cc(t f ∞) ) 1. As

Figure 5. Characteristic length lc as a function of velocity.
Closed points denote the values taken from steady-state
examinations, and open symbols refer to our direct measure-
ments of the characteristic times during reverse sliding. The
solid line reflects the power law v0.28.

τΦ(v) ≈ 2
Re cos Φ

v
(5)

Cc(t) )
Φ(t) - 90°
〈Φ〉ss - 90°

(6)
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shown in Figure 6, the general behavior of the cross-
over function is rather independent of the sliding velocity
v.

It is also interesting to study the absolute value of the
end-to-end vector Re, which is shown in the inset of Figure
6. For this purpose, it is convenient to introduce a new
characteristic time τR, which is defined as the time elapsed
between the moment where the sliding direction is
inverted and the moment at which the expectation value
of Re is minimal. It is obvious that the polymers are
strongly compressed during the return phase. This
requires energy, which will eventually be dissipated as
heat. An increase of the relative (and hence absolute)
compression of the polymers is observed with increasing
sliding velocities. We may note in passing that τR and τΦ

are strongly correlated; that is, for our data we found τR
≈ 0.9τΦ. The data for the compression in the inset of Figure
6 superimpose less systematically than for the inclination
angle shown in the main part of Figure 6.

A question discussed in the literature is whether brushes
swell or shrink when slid against each other. Previously,
we found almost constant brush heights for constant-
velocity sliding,15 supporting the theory of Rabin and
Alexander.16 One can conclude from Figure 6 that Re
decreases upon return, while sin(Φ) goes through a
maximum; hence a more detailed analysis is necessary to
find the behavior of the product Re sin(Φ), which gives the
brush height. Such an analysis is shown in the top of
Figure 7, in which the solid line reflects the theory of
Rabin and Alexander, who predicted constant brush
heights for constant-velocity sliding. One can see that the
curves clearly lie above that line, indicative of brush
swelling. Our data do not include the return to steady-
state, constant-velocity sliding, which would require the
data to join the Rabin-Alexander line again. The obser-
vation of brush swelling during the return phase is in
agreement with Doyle et al.’s simulations of oscillatory
shear.8 They suggested that swelling is due to a diffusive
process of monomers into the overlap region, which is
consistent with our observations concerning the return
protocol.

The bottom part of Figure 7 shows snapshots of the
polymers during the return phase. The snapshots are
separated by time intervals 2τΦ, and time progresses from
the left to the right. It can be seen that the inclination of
both polymers is approximately 90° after 2τΦ; however, a
memory or hysteresis in the structure of the polymer

belonging to the upper wall persists even after the upper
wall has been slid by a distance 6τΦv.

As the brushes swell during the return phase, the
mutual brush interpenetration or the overlap should be
large. Keeping in mind the correlation between brush
overlap and shear forces for the steady-sliding regime,
shear forces thus must be high during swelling. These
conclusions are confirmed in Figure 8. In the top row, we
show the overlap (as measured by Nint) as a function of
time t without (left) and with (right) giving the system
time to relax. The bottom row shows the corresponding
shear forces σbr. As expected, both Nint and σbr are maximal
after sliding in the new direction was imposed for a time
τφ. This means that both quantities are maximal when
the average inclination angle Φ is approximately 90°.

The inset of Figure 8 shows the waiting-time dependence
of the maximum shear force during the itinerant phases
of return. While an increased maximum shear stress is
detected for the waiting time trel ) 50, our data suggest
that the overshoot decreases eventually. However, it is
very difficult to get good statistics due to the poor signal-
to-noise ratio. All the data presented in Figure 8 are the
averages over 10 independent simulations of a system
containing 3990 particles, where each single run is 105-
106 MD steps long. One may yet speculate that the
relatively weak dependence of the maximum in σbr on the
relaxation time trel might be due to the fact that the driving
forces in our system are essentially entropic, while in
experimental systems,13 energy relaxation could induce
the logarithmic increase of the maxima in σbr with trel.
Processes requiring energy activation such as cis-trans
conformation changes are not included in our model.

From our results on the itinerant behavior during the
return phase, it is possible to draw some semiquantitative
conclusions on oscillatory shear. For this purpose, we make
the thought experiment of moving the upper wall a
distance 2A at constant velocity v in one direction. We
then suddenly invert the sliding direction and move again
the same distance, whereupon we reiterate the procedure.
This thought experiment would roughly mimic rheological
driving with amplitude A and period T ) 4A/v or
alternatively frequency ω ) πv/2A. In our thought
experiment, one would expect friction to be large if the
dissipated energy per area and slid distance {∫dxσ(x)}/
∫dx is maximal. Here, x denotes the distance that the
upper wall has moved parallel to the new direction since
the last return; hence ∫dx ) 2A between two returns.

(15) Kreer, T.; Müser, M. H. Wear, in press.
(16) Rabin, Y.; Alexander, S. Europhys. Lett. 1990, 13, 49.

Figure 6. Crossover function Cc(t) defined in eq 6 as a function
of normalized time t/τΦ during stop-and-return for various
sliding velocities. Inset: Time dependence of the end-end
distance Re normalized by the steady-state values. Figure 7. Top: Comparison between inclination angle and

end-end distance during the transition v f -v. Bottom: Time
evolution of a randomly chosen chain from the upper brush
(filled symbols) and the lower brush (open symbols) during
crossover to a new steady state.
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From the lower part of Figure 8 (left-hand side), one
would expect maximum friction if the net distance moved
per semicircle (2A) would presumably be close to but less
than 2τΦv. This rough estimate would also follow from the
bottom part of Figure 6. A similar result, maybe a slightly
lower value for the “optimal” amplitude A, would be
obtained if our goal was to maximize the mutual brush
overlap; see the upper part of Figure 8 (left-hand side).
All these estimates anticipate that the characteristic
driving amplitude Ac defined by

maximizes the energy loss. For A much greater than Ac,
steady state would be reached. In steady state, there is
less resistance to sliding than during large fractions of
the itinerant return phase. For A , Ac, shear stresses
would not even reach the steady-state value and hence
energy loss would be small as well. This power law might
be related to the time needed to reach steady-state
conditions if one starts from equilibrated configurations
at v ) 0; see for instance the introduction in ref 17.

If we incorporate the power law lc ∝ v0.3 (shown in Figure
5) into our conclusions, then we expect the characteristic
drivingamplitude Ac, for which thedissipation is maximal,
to scale with v0.3; see eq 7. Here v is the maximum velocity
in oscillatory driving. Alternatively, the frequency at which
friction is maximum is expected to scale with a power law
close to v0.7, where v is again the maximum velocity during
the rheological experiment. Of course, this prediction is
only an approximation and it can only hold in the velocity
range where the power law lc ∝ v0.3 is a reasonable
description.

We want to conclude this section with a comment on
the two ensembles constant separation, which was our
choice, versus constant load. While we consider constant
load to be closer to many technical applications, constant
separation is often imposed in experiments, in particular

when normal forces are measured and hence applied to
the system under investigation. Although we intend to
interpret experimental results, it is still necessary to
discuss the consequences of stop-and-return under con-
stant-load conditions. When we reverse sliding, we observe
an increase in the normal force between the upper and
lower brushes in the order of 10%. This observation clearly
demonstrates that the constant load and the constant
separation ensembles are not identical. Moreover, it shows
once more that it is often not possible to properly define
a friction coefficient under constant separation,14 in
particular in the stop-and-return protocol, where it is even
difficult to define a meaningful average load. However,
the brushes are very soft, which allows them to accom-
modate the additional normal force rather easily. In a few
test runs at constant load, we noted that the relative
corrections to the shear force and other observables of
interest such as the compression of the polymers were
even smaller than those in the normal force. This means
that there are only small quantitative changes rather than
qualitative changes, when we move from constant sepa-
ration to constant load; that is, the shear force overshoot
would be reduced from a 100% overshoot to an overshoot
in the order of but greater than 90%.

C. Stop and Go. While inversion of the driving direction
leads to a strong deviation from steady-state sliding, effects
are more subtle when sliding is reimposed in the original
direction after some waiting time trel. Of course, in the
limit of trel f ∞ the protocols (i) stop, ‘wait’, and return and
(ii) stop, ‘wait’, and go must lead to the same behavior.
However, as relaxation times are extremely large in
compressed brushes, the relaxation to the zero-stress
equilibrium structure is hardly ever reached.

The relaxation after stopping for our model system has
already been investigated in ref 15. The inset of Figure
1 in that paper shows that the brushes essentially relax
along the Rabin-Alexander line, while inversion of the
sliding direction leads to brush swelling as demonstrated
in the top part of Figure 7. Here, we will be concerned
with the question of how the system goes back into steady(17) Kröger, M.; Loose, W.; Hess, S. J. Rheol. 1993, 37, 1057.

Figure 8. Number of interactions (top row) and direct shear stress between brushes (bottom row) normalized by their steady-state
values for trel ) 0 (left colon) and trel ) 50 (right colon) during reversal sliding. Error bars are given for v ) 0.05 and are equal or
smaller for higher velocities. Inset: Height of the maximum for v ) 0.2 as a function of waiting time. The horizontal line denotes
the value for trel ) ∞, i.e., sliding is initiated out of thermal equilibrium (v ) 0).

A c ) vτΦ ∝ v0.3 (7)
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sliding after it was given the opportunity to relax. The
structural changes during this process will be character-
ized with the help of a transition function C(t), which is
defined as

where A denotes the observable of interest, that is, end-
to-end distance and average inclination. t1 is defined as
the time at which sliding is reinitiated, and 〈A v)0〉 denotes
the expectation value of the observable A at zero-stress
equilibrium. The transition functions of the squared end-
to-end vector and the inclination angle are shown in Figure
9 as a function of time for a relaxation time trel ) 50. The
time axis is expressed in units of τrheo, which is defined as
the time at which the free endgroup reacts to the
reinitialization of motion, that is, where ∂C(t)/∂t becomes
positive.

After sliding is reinitiated, polymers stretch and incline
in a characteristic fashion. For all velocities and relaxation
times employed in this study, no swelling is observed
during this itinerant go phase. The only observable that
shows quite universal behavior is the number of interac-
tions Nint, which decays exponentially with time toward
the steady-sliding value, once sliding is reinitiated. This
is shown on the left-hand-side of Figure 10. The corre-
sponding relaxation time increases strongly with decreas-
ing velocity v, which is again indicative of the far-from-
equilibrium nature of the system.

It is interesting to note that the shear force does not
show a significant overshoot (stiction peak) (see the right-
hand-side of Figure 10), which is again in contrast to the
stop-and-return protocol. Only for the two large velocities
v ) 0.15 and v ) 0.25, a small hump in the shear force
is observed, which is indicative of the mechanical contact’s
structural relaxation. There is no characteristic length or
other scaling concept that would allow us to superimpose
data as well as we could for the stop-and-return protocol
in Figure 8.

Summarizing, we confirm our previous result that the
shear forces decay more rapidly than the polymer struc-
ture; in particular, σbr decays more rapidly than the
inclination of the end-to-end vector.15 However, indirect

information about the degree of structural relaxation can
be obtained by comparing the stop-and-go and the stop-
and-return protocol. If the structural relaxation is not
complete yet, larger shear stress maxima will be found if
the sliding direction is inverted than if the sliding is
continued parallel to the original direction.

IV. Conclusions
In this paper, we presented the study of a generic model

for the relative, sliding motion of two surfaces bearing
end-anchored polymers in good solvent conditions. Our
focus was on contrasting stationary and nonstationary
sliding modes. The two nonstationary sliding modes follow
two different protocols: (i) stop and return and (ii) stop
and go. In either case, the system can relax for some time
before sliding is reimposed.

The strong correlation between shear forces and mutual
brush overlap observed previously1 is found to persist,
even though in the new study, the thermostat does not act
in the sliding direction. The overlap controls friction not
only during stationary sliding but also in nonstationary
conditions. If the sliding direction is inverted, the brushes
swell, which leads to an enhanced brush overlap during
the itinerant return phase. This swelling is reflected in
a pronounced maximum of the shear stress σbr. The
swelling is also consistent with the increase of the normal
forces reported during oscillatory shear flow.5

Shear stresses are maximal in the stop-and-return
protocol when the average inclination of the polymers
passes through 90°. The characteristic distance Ac that
the upper wall has to be moved relative to the lower wall
for the shear stress maxima to occur is found to be twice
the lateral extension lc of the polymers in steady-state,
constant-velocity conditions. Hence, experiments employ-
ing oscillatory shear might allow one to determine the
polymer’s inclination under constant-velocity conditions
rather precisely. In a limited range of velocities, lc is found
to be proportional to v0.3, where v is the relative sliding
velocity. Although the exponent 0.3 is not universal, that
is, it depends on the ratio of grafting density and critical
grafting density, it would be interesting to check experi-
mentally for a power-law behavior. This could be done for
example using oscillatory shear, where A would have to
be associated with the driving amplitude and the velocity
v would roughly equal Aω with ω being the driving
frequency. Note that the predicted shear stress maxima
(or maxima in effective viscosity) for A ≈ 2lc are the
consequence of the strong nonequilibrium state of the

Figure 9. Transition functions of rheological observables for
the stop-and-go protocol. The time axis is rescaled by the
characteristic time τrheo, defined as the time where ∂C(t)/∂t
becomes positive. At time t ) t1, sliding is reinitiated after the
system could relax for a time trel ) 50. Left: Squared end-to-
end distance. Right: Inclination angle. Inset: Characteristic
time as a function of velocity.

Figure 10. Left: Number of interactions as a function of time.
The time axis is rescaled so that all data collapse on the same
point at unity. Inset: Characteristic time as a function of
velocity. Right: Shear stress as a function of driven distance.

C(t) )
〈A(t)〉 - 〈A v)0〉
〈A(t1)〉 - 〈A v)0〉

(8)
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brushes. Since the system is far out of equilibrium, these
maxima cannot be related to an intrinsic relaxation time
of the embedded system as is frequently done in the
analysis of rheological data.11 At the same time, it is not
necessary to assume stick-slip motion for the occurrence
of enhanced dissipation, which otherwise can lead to
enhanced dissipation.12

In a previous study,15 we found that shear stress
relaxation does not imply structural relaxation of the
polymers. In the terminology of this paper, ref 15
corresponded to a “stop-and-wait” protocol, for which we
found that the inclination angle of the end-to-end vector
decays much more slowly than the shear stress. However,
if one compares the shear stress maxima that one observes
with the (i) stop-wait-return protocol with those from
the (ii) stop-wait-go protocol, more information can be
revealed. The shear stress maximum in σbr is more
pronounced for (i) than for (ii) if there is hysteresis in the
orientation of the polymers. Relaxation cannot be complete
until the difference in the σbr maxima has disappeared for
protocols iand ii.Figurativelyspeaking, combingout,away
from the part in the hair, requires less effort than combing
the hair in the opposite direction. However, if hair is left
alone to nature (wind, poor hygiene, etc.) for a long period
of time, combing in either direction eventually becomes
equally difficult.

As in one of our previous studies,15 we want to emphasize
that possible new effects may emerge in experiments due

to energy-driven instabilities such as cis-trans confor-
mation changes in the polymers. In fact, Cai et al. observe
two maxima in the shear loss G′′(ω) (see Figure 2 in ref
10). Only one of these can be related to the phenomenon
central to this study, while the other one might be related
to sliding-induced cis-trans conformation changes. This
and other thermally activated configuration changes are
absent in our simple bead-spring model that emphasizes
the entropic excluded-volume interactions between poly-
mers in good solvents. Local cis-trans conformation
transitions will presumably induce stronger aging effects
for both protocols, stop-and-return and stop-and-go.
Nevertheless, we do not expect strong deviation from our
main conclusions.

Another important difference between simulations and
experiments for the stop-and-go protocol concerns the use
of periodic boundary conditions in the simulations. Thus,
the predictions relating to the stop-and-go protocol relate
better to journal-bearing or “wheel-on-the-road” geom-
etries than to the geometry employed in surface force
apparatus experiments.
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