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Abstract. A model of solid solutions of Ar1−x (N2)x has been studied by Monte Carlo
techniques over a wide range of temperatures for various concentrationsx. The results are
discussed in terms of a recently presented discrete-state model for cubic orientational glasses.
Comparison is made to experiment. At temperatures smaller than the fcc–Pa3 transition
temperature of the pure N2 model system, the following phases were found. Forx > 0.9,
the Pa3 structure turns out to be stable. Atx = 0.9, the Pa3 structure is stable, as is a
frozen-in orientational disordered phase, which has a local ferroelastic type of ordering. At
x = 0.7, indications of two-step relaxation can be observed, indicating a primary and a secondary
relaxation. The local order is ferroelastic but the disorder is no longer frozen in. For smaller
N2 concentrations, 0.1 < x < 0.5, neighbouring molecules remain parallel but the relaxation
is clearly a one-step process. When translation–rotation coupling is suppressed by keeping
the atoms and molecules fixed to their lattice sites, thePa3 structure remains stable even at
concentrations as low asx = 0.5.

1. Introduction

Orientational glass phases are characterized by frozen-in disorder of the orientational degrees
of freedom, while the translational degrees of freedom form a crystal. An orientational
glass phase can be obtained experimentally by cooling down solid mixtures of molecules
and atoms such as Ar1−x(N2)x or K(CN)xBr1−x if the concentrationx and the pressurep
are chosen appropriately. For a review of the experimental work see [1].

From a theoretical point of view, the study of orientational glasses is appealing mainly
for two reasons. (i) Contrary to what is the case for canonical glasses, it is possible to
approximate a microscopic model HamiltonianH in terms of microscopic Taylor expansion
coefficients like, e.g., displacement variables. This type of approach was worked out in
particular by Michel and co-workers [2, 3]. Unfortunately, statistical averages of observables
and the partition functionZ(β) = Tr{exp(−βH)} cannot be evaluated without making
considerable simplification. (ii) There exists an analogy to the Potts glass, which has been
principally promoted by Goldbart and Sherrington [4]. Exploiting this analogy, a mean-field
Hamiltonian can be defined andZ(β) can be calculated with the replica trick [5]. This kind
of approach, however, lacks the mapping of a realistic microscopic Hamiltonian to the Potts
glass. For a review on the theoretical work on orientational glasses see [6].

The Taylor expansion coefficients in a microscopic treatment of quadrupolar glasses
are the translational displacement variablesuα

i and the local quadrupolar tensorsf
αβ

i =
nα

i n
β

i − 1
3δαβ , whereδαβ is the Kronecker symbol,α, β = 1, 2, 3, andnα

i is the Cartesian
component of the unit vector describing the orientation of a molecule at the lattice point
i [3, 6]. In the case of a mixture containing only atoms and linear molecules with inversion
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symmetry, the minimum-expansion expression of the total potentialVt is therefore

Vt = V0 +
∑
ij

(∑
αβγ δ
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αβγ δ

ij f
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i f
γ δ

j +
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αβγ

B
αβγ
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αβ

i u
γ

j +
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αβ

C
αβ

ij uα
i u

β

j

)
(1)

where the constant potentialV0 and the expansion coefficientsA
αβγ δ

ij , B
αβγ

ij , C
αβ

ij depend on
the given frozen-in positional disorder. The first term in the sum in equation (1) refers to
the rotation–rotation coupling (RRC) fori 6= j and to the crystal-field coupling (CFC) for
i = j . The two remaining terms express the translation–rotation coupling (TRC) and the
translation–translation coupling (TTC) respectively.

In this microscopic view, the interaction that changes most dramatically when a molecule
is replaced by an atom at a given lattice site is the RRC which completely drops out. All
of the other coefficients should remain nearly constant since the two chemical components
have to be miscible. In the case of (para-H2)1−x(ortho-H2)x , which falls into the same class
of orientational glasses as Ar1−x(N2)x , the coefficientsAαβγ δ

ii , B
αβγ

ij , C
αβ

ij remain identical,

while A
αβγ δ

ij = 0 if at least one of the two particles at lattice sitesi and j is an ortho-H2,
which plays the role of the isotropic Ar atom.

For fcc-Ar1−x(N2)x mixtures the following extreme cases are obtained: in the dilute
limit, a N2 molecule has its preferred orientations parallel to one of the three principal axes
due to CFC [7], while in the pure system,x = 1, the N2 molecules are oriented along the
space diagonals due to RRC [8]. Thus, the competition between CFC and RRC plays an
important role.

In Potts glasses, the competing interactions are modelled by randomly distributed
coupling constantsJij coupling the Potts spinsSi and Sj . One of the components of
a Potts spin is one, and all of the other components are zero. Introducing a random field
hi at lattice sitei the Hamiltonian of the Potts model is given by [9]

Hp =
∑
ij

JijSi · Sj +
∑

i

hi · Si . (2)

The appropriate choice of the distributions forJij and hi depends on the system under
consideration. The analogy between a Potts spin and the orientation of a molecule in
a (mixed) crystal is due to high local energy barriers that make the orientations of the
molecules quasi-discrete. Hence, the orientational state of a molecule can be described
by a pseudo-Potts spin. In a semi-microscopic model [10], these pseudo-Potts spins can
be coupled bilinearly to elastic variables. Structural changes and anomalies in the elastic
moduli have been obtained in good qualitative agreement with experiment.

In a recent work [11], a similar approach led to a self-consistency equation for the order
parameter from which the shear modulusC44 follows. This approach is made especially for
the description of cubic orientational glasses.

It is not clear whether the analogy between Potts glasses and orientational glasses can be
justified. Computer simulation is an excellent tool for investigating the assumptions made in
theoretical model building. Tadic̀ et al assumed in their model for cubic quadrupolar glasses
that the molecules align preferentially parallel to one of the{111} axes. This assumption
is in accordance with computer simulation results for (KBr)1−x(KCN)x for x = 0.75 [12].
However, on loweringx, the correlation between the space diagonals and the orientation of
the molecules might decrease.

Another open question concerns the dynamics of the freezing process. In a simple
model of orientational glasses [13], a time-scale separation between primary (global) and
secondary (local) relaxations has been predicted. In this work, local relaxation processes
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like thermally activated inversion flips of the N2 molecules are made responsible for the
anomalies in the low-temperature specific heat.

From the known experimental data, no primary and secondary relaxation could be
deduced for Ar1−x(N2)x . Unfortunately, there are no long-time simulations of realistic
models that could be used to elucidate this question. Either the models studied were
highly phenomenological [14, 15], or the correlation functions were averaged over just
a few 1000 molecular dynamics steps [12, 17]. In such a short computer simulation
it is clearly impossible to find a time-scale separation. In [18], much longer runs (up
to 106 MC steps) were performed for fcc-Ar1−x(N2)2, x = 0.33 and x = 0.67, from
which correlation functions (105 MC steps long) could be deduced. For the temperatures
investigated the relaxation process was clearly a one-step process. No time-scale separation
in the relaxation could be observed. However, it is conceivable that the large jump from
x = 0.33 to x = 0.66 or the large jumps in temperature of at least 5 K concealed the
time-scale separation. Concentration-dependent studies wherex varies only smoothly could
reveal this result.

An important advantage of computer simulation is that all parameters are controllable.
Interactions can even be switched on or off. TRC and TTC can be suppressed if the
translational degrees of freedom are not moved during a Monte Carlo run. With such
a procedure it is possible to investigate the influence of these interactions on the order
parameter and on correlation functions.

The outline of this paper is as follows: in section 2 the model system for Ar1−x(N2)2

is presented and its applicability to real systems is discussed. The observables are defined
before the mean-field theory of Tadic̀ et al [11] (MFT) is briefly described. In section 3
the results of computer simulations are presented and comparison is made to MFT and
experiment. First, recently obtained values for the order parameter as a function of
concentrationx and temperatureT are interpreted in terms of MFT. Predictions for the
elastic constants are made. For these purposes, a self-consistent integral equation for
the order parameter had to be solved. The local arrangements of the N2 orientations are
investigated. This is especially interesting as regards testing the input assumptions of the
MFT. The effect of TRC and TTC on some self-correlation functions and on the phase
diagram is discussed. A summary and a concluding discussion are given in section 4.

2. Methods

2.1. The model system

Our model system for the Ar1−x(N2)x mixtures consists of point atoms and linear molecules
containing two force centres. The 500 atoms and molecules are initially distributed at
random on a fcc lattice. Cubic periodic boundary conditions are chosen. The lattice constant
a is interpolated linearly withx between the lattice constantsaAr andaPa3, minimizing the
classical potential energy of the pure Ar system and the classical potential of the pure N2

system in thePa3 phase, respectively. If not mentioned otherwise, the initial orientations
of the N2 molecules have been set up according to thePa3 phase.

The interaction between the particles takes place via Lennard-Jones potentials:

V (r) = 4ε

(
σ

r

)6
{(

σ

r

)6

− 1

}
. (3)

The potential parameters [16] have already been used by Kleeet al yielding a very rough
estimate of the phase boundaries of the Ar1−x(N2)x mixed crystal in theT –x plane [17].
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The sampled variables are the centre-of-mass coordinates of all of the atoms and all of the
molecules, as well as the orientational coordinates of the molecules.

This choice of potential parameters results in a fcc–Pa3 transition temperatureT1 =
17.5 K, while experimentallyT1 ≈ 35 K [18]. Taking into account electrostatic interactions
between N2 molecules leads to a more precise phase diagram [8]. Results on solid nitrogen
using more realistic potentials will be published elsewhere [19]. Note that the physical
interpretation does not change if the interatomic potentials are modified in this way. In both
cases we are dealing with a Hamiltonian which can be approximated by an expansion of
the type mentioned in equation (1). Hence, typical experimental findings for orientational
glasses [20] could be obtained within this model, e.g. the slowing down of the reorientation
and the broad non-uniform distribution of local orientational order parameters smoothly
evolving with temperature. The efficiency of the algorithm (measured in MC sweeps per
second) decreases by nearly a factor of ten if electrostatic interactions are taken into account
in the pure N2 system. Hence, mixtures with high N2 concentrations could no longer be
equilibrated satisfactorily.

Clearly, it is conceivable that the topology of the phase diagram changes when the
interactions are altered. This might happen in analogy to the noble gases where a solid
phase for He does not exist at normal pressures because the de Boer parameter is too
large [21]. Nevertheless, it is important to investigate various classes of phase diagrams
for orientational glasses in order to understand the freezing-in process of the orientational
degrees of freedom.

2.2. Observables

A very important observable for orientational glasses is the order parameterqEA, which is
defined in analogy to the Edwards–Anderson order parameter of spin glasses [6].qEA can
be calculated by taking the limitt → ∞ of the disorder-averaged functiongi(t):

qEA = lim
t→∞

[
gi(t)

]
av

(4)

wheregi(t) is a time autocorrelation function of theith quadrupolar tensorf αβ

i (defined in
the introduction) [6]:

gi(t) = 3

2

∑
α,β

〈f αβ

i (t ′)f αβ

i (t + t ′)〉t ′ . (5)

qEA measures the orientational localization of the molecules. From the curvature of the
relaxation functiong(t) = [gi(t)]av insight into the relaxation processes can be obtained.
The broader the relaxation function the more collective is the relaxation.

MC data at long times can be given a dynamical interpretation because importance
Monte Carlo sampling amounts to time averaging along the stochastic trajectory describing
a numerical realization of a Markovian master equation [22]. Comparing orientational
correlation functions obtained by molecular dynamics [23] and by Monte Carlo [7] methods
shows that one MC step approximately corresponds to 10−13 s of real time for the model
system under consideration in the dilute limit. Clearly, this scale factor concerns only
thermally activated processes and is not appropriate for the description of librational motion.
Furthermore, the scale factor is presumably concentration dependent.

The local order of the N2 orientations is described by the distribution function

P(d, x) = 〈
δ(|Ri − Rj | − d) δ(ni · nj − x)

〉
. (6)

Here,ni ·nj is the scalar product of two vectors indicating the orientations of the molecules
at lattice sitesi andj which are separated by a distanced = |Ri −Rj |. For simplicity, the
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values ofd are replaced by those values that would have been obtained if the atoms and
molecules had been constrained to their ideal fcc-lattice positions. This makes the values
of d discrete and the functionP(d, x) easier to evaluate.

2.3. Mean-field theory

In this subsection the mean-field theory for cubic orientational glasses presented by Tadic̀ et
al [11] is briefly presented. One of their basic assumptions is that at low temperatures the
molecules align (nearly) parallel to one of the four space diagonals, as is the case in pure
N2 solids at low pressures and low temperatures. The orientational state of the molecule at
lattice pointi can then be described by a symmetry-adapted numberZiµ with µ = 1, . . . , 3
and Ziµ = −1, 0 or 1. Disorder is introduced by defining random interactionsJij and
random fieldshiµ, so the phenomenological quadrupole–quadrupole interactionVQ is given
by

VQ =
3∑

µ=1

(∑
ij

JijZiµZjµ +
∑

i

hiµZiµ

)
. (7)

Jij and hiµ are Gaussian-distributed variables with the first and seconds moments
(J0/N, J/

√
N) and (0, 1) respectively,N being the number of particles. Note that every

molecule interacts with every other molecule with the same distribution irrespective of
distance, and hence the moments are suitably scaled withN .

Starting from a HamiltonianH = VQ the following self-consistent equations for the
order parameter

q = 1

3

∑
µ

〈p2
µ〉

have been obtained for the isotropic replica-symmetric case in the absence of long-range
order and external field:

〈pn
µ〉 =

∫ 3∏
ν=1

[
dxν√

2π

]
pn

µ exp

(
−1

2

∑
ν

x2
ν

)

pµ =
(

tanh(βHµ) −
∏
ν 6=µ

tanh(βHν)

) /(
1 −

∏
ν

tanh(βHν)

)
Hµ = J

√
〈p2

µ〉 + 1̃ xµ

(8)

with 1̃ = 1/J 2.
The coupling of the rotational to the translational degrees of freedom is carried out in

analogy to equation (1). If only long wavelengths are concerned, it is sufficient to bilinearly
couple the rotational degrees of freedom to the strain tensor componentsεαβ :

VQT = γ
∑

i

3∑
µ=1

Ziµεi,µ+3 (9)

whereγ is a coupling constant andεi,µ+3 the (µ + 3)th component of the strain tensor in
Voigt notation at lattice sitei.

As in other cases where long-range order is absent, the following temperature
dependence of the elastic modulus (hereC44) is obtained:

C44(T ) = C0
44

1 + γ̃ β(1 − q)
(10)
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whereC0
44 is the bare shear elastic constant andγ̃ 2 = γ 2/C0

44. The bare elastic constants
are given by the pure translation–translation coupling, which is not given here explicitly.

Figure 1. The order parameterqEA(T ) = [σ ]av as a function of temperature. Symbols are
simulation results [18]; lines are a fit according to a mean-field theory [11]. Inset: the relative
shear elastic modulusC44/C0

44 according toqEA(T ) and mean-field theory.

3. Results

3.1. The order parameter

The self-consistency equation for the order parameter obtained via the mean-field theory
(MFT) presented in the last section has not yet been tested against experiment or computer
experiment. Some data suitable for such a test might be the order parameterqEA(x, T )

which has been computed recently forx = 1
3 andx = 2

3. The results are shown in figure
1. The lines which are obtained according to equation (8) yield good agreement within
the statistical error bars. The following parameters have been used for the solid lines: (i)
x = 1

3, J = 9.8, h = 0.9; (ii) x = 2
3, J = 13.2 , h = 0.28.

The nearly quantitative agreement between simulation and mean-field theory could
indicate that the four-state Potts glass with random bonds and random fields might be
suitable for the description of cubic quadrupolar glasses. However, the replica-symmetric
solution with the parameters given above becomes unstable atT ≈ 12 K for x = 1

3 and
T ≈ 15 K for x = 2

3.
One might also argue that the S-like curvature of the order parameter is of general

nature and thereforeq(T ) might be described by any Potts model. In our opinion, the order
parameter alone will not suffice for judging the relative merits of various approximative
theories, and a more detailed analysis of various other quantities is required.

Tadìc et al related the order parameter to the shear modulusC44; see equation (10).
This relationship between the elastic modulus and the order parameter does not depend on
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the specific model but rather is a general feature of the bilinear coupling of orientational
degrees of freedom and translational degrees of freedom, as long as long-range order is
absent.

Good qualitative agreement with experiment and with theory is found: the higher the
concentration of the molecules, the higher is the temperature where the minimum inC44 is
found. According to provisional experimental data [24], there is even a good quantitative
agreement. A slight minimum inC11 + 2C12 at a temperatureT ≈ 20 K is observed by
using Raman scattering techniques forx = 0.4.

It is worth mentioning that the systems were in thermal equilibrium at the temperatures
where the proposed minima inC44 occur. This means that the minimum inC44 does not
coincide with a (glass) transition temperature because in this case the correlation times
would diverge, and therefore an equilibration would not have been possible using standard
MC methods. Hence, if there is a characteristic freezing temperature where correlation times
and correlation lengths diverge, it must be lower than the temperature where the minimum
in C44 occurs. Note that the mean-field theory quoted above would imply forh = 0 a
transition at finite temperatures, while in the short-range case [9] there is no transition at
all.

3.2. Local ordering

Experimentally, it is difficult to determine the correlation between the orientations of
neighbouring molecules in orientationally disordered systems. However, this information
might be important for understanding the freezing-in process of the orientational degrees of
freedom. In a computer simulation study such correlations can be quantified by measuring
P(d, x) as defined in equation (6).

For Ar1−x(N2)x mixtures, a short-range order similar to the order in thePa3 symmetry
is suspected to appear in an intermediate-concentration rangex ≈ 0.5 where experimentally
Ar1−x(N2)2 crystallizes in the fcc symmetry [25]. Such a local ordering can be visualized
by computingP(d, x).

In figure 2 the results forP(d, x) are presented for Lennard-Jones Ar1−x(N2)x mixtures.
For the pure N2 crystal, P(d, x) is shown 10% above and 10% below the transition
temperature obtained,T1. ForT > T1, the orientations of neighbouring molecules are nearly
equally distributed. ForT < T1, a maximum inP(d, x) can be observed atx = 1/3 for
the nearest neighbours and for the third-nearest neighbours, according to thePa3 structure.
The next-nearest neighbours and the fourth-nearest neighbours belong to the same sublattice
as the central N2 molecule and therefore a peak atx = 1 is observed inP(d, x).

In the mixed cases, neighbouring molecules preferentially align parallel to each other.
The length of the ferroelastic domains arising obviously increases with increasing N2

concentration. Note that for Ar0.33(N2)0.67, a relative minimum exists in the distribution
function P(d, x) at x ≈ 0.75. The minimum becomes all the more pronounced as the
distanced increases. This observation is not easy to explain, but it shows that locally the
ferroelastic domain length scale is not the only characteristic length scale.

The correlation of the average molecular axis to one of the three principal axes{100} of
the cubic system and to one of the four space diagonals{111} has been determined as well.
At T = 10 K, we obtainq100 = 0.33 andq111 = 0.25 for Ar0.67(N2)0.33. For Ar0.33(N2)0.67,
q100 = 0.22 andq111 = 0.32 is obtained at the same temperature. Hence, the higher the
N2 concentration the more pronounced is the correlation with one of the space diagonals.
Nevertheless, there is no dramatic difference between the correlations.

For Ar0.1(N2)0.9, both types of local orientational order can be observed. Ferroelastic
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(a)

(b)

(c)

(d)

Figure 2. The angle–angle correlation function of N2 molecules. (a)x = 1/3, T = 10 K, (b)
x = 2/3, T = 10 K, (c) x = 1, T = 19 K, (d) x = 1, T = 16 K. The grid shows thea priori
distribution.
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ordering is obtained by cooling this mixture down. In this case, all molecules align parallel
to one of the{111} axes, resulting in a trigonal-like phase. However, for temperatures
T < T1, the Pa3 structure remains stable if the initial structure corresponds to thePa3
symmetry.

The results presented in this subsection might be altered if more realistic potentials
were used. In particular, one expects a stronger tendency of neighbouring molecules to
align perpendicularly if electrostatic interactions are taken into account. Nevertheless, the
study presented starts from a microscopic Hamiltonian and it is quite possible that other
real mixtures of atoms and molecules fall into the class of Lennard-Jones Arx(N2)1−x .

3.3. Time correlation functions

Primary and secondary relaxations have not yet been observed for Ar1−x(N2)x mixtures,
while two-step relaxation is quite common in other classes of disordered materials.

Experimentally, the orientation-density self-correlation function is difficult to obtain
because the homonuclear N2 molecules do not couple to the dielectric permittivity.

Hence, computer simulation is the appropriate tool for investigating correlation functions
of the type of equation (5). In order to perform well-defined averaging, good equilibration
has to be performed.

The duration of equilibration depended on the concentration. The most extensive studies
were carried out forx = 0.7, a sample of 500 particles in total, which was equilibrated for
106 MC steps. The correlation function for this sample was then averaged over 2× 106

MC steps. This corresponds to 150 h of CPU time on a CRAY Y-MP. The computational
effort for the study of thex = 0.5, x = 0.6 andx = 0.8 samples was in the same range.

Figure 3. The correlation functiong(t) for various N2 concentrationsx at T = 12 K.

In figure 3, the orientation correlation function is shown forx = 0.1, 0.2, . . . , 1.0 at
the constant temperatureT = 12 K. The correlation time obviously increases with the
N2 concentrationx. A clear plateau at MC timest = 105 in the self-correlation function
can only be obtained forx 6 0.3. Note that the order parameter which is given by the
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correlation function at timest → ∞ first increases withx up tox = 0.3 and then seems to
decrease with increasingx. In the range 0.4 6 x 6 0.7, only an upper bound can be given
for the order parameter. For concentrationsx > 0.8, a clear plateau can be found again
in g(t) = [gi(t)] at MC times t > 102 MC steps. The corresponding plateau values can
again be interpreted as the order parameter provided that with increasing particle number
the plateau stabilizes for infinite times.

An interesting feature of figure 3 is that the relaxation is clearly a one-step procedure at
low concentrations. With increasingx, however, the relaxation begins to be broadened. At
x = 0.7, strong indications for a two-step relaxation are found with a primary relaxation for
t > 104 and a secondary relaxation fort < 103. Unfortunately, this is not a real-time scale
separation, but nevertheless it is enough to show up as a shoulder in the relevant correlation
function.

3.4. Translation–rotation coupling

The translation–rotation coupling (TRC) plays an important role when the generalized
susceptibility is determined experimentally by measuring the elastic constants [6]. On the
other hand, TRC induces changes in the Bravais lattice due to the onset of orientational
ordering or freezing [3]. One could now ask the opposite question—of what the
consequences of TRC are for the orientational ordering.

Figure 4. The correlation functiong(t) for x = 0.7 at T = 12 K. Different algorithms have
been used; see the text.

Different forms of simulation algorithms were used to elucidate this question and the
resulting self-correlation functions forx = 0.7 andT = 12 K are shown in figure 4:

(i) annealed:all degrees of freedom are moved;
(ii) quenched: the translational degrees of freedom are constrained to their thermal

equilibrium positions;
(iii) fcc (Pa3): the translational degrees of freedom are constrained to the ideal fcc
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positions; the initial configuration of the orientational degrees of freedom corresponds to
the Pa3 symmetry;

(iv) fcc (OG): for the translational degrees as in (iii); the initial configuration of the
orientational degrees of freedom is taken from case (i).

In all cases at least 3× 105 MC steps of equilibration were performed before the
observables were averaged.

Although translational displacement variables are considered to be small, the four
cases investigated yield quite different forms of relaxation functions and local orientational
ordering.

In case (i), the orientation correlation function has the lowest values at every time
investigated. If the translational degrees of freedom are then fixed to their thermal
equilibrium positions, case (ii), a clear plateau ing(t) can be found very quickly, while for
times t < 10 the two relaxation functions are similar. Thus, for ‘successful’ reorientational
motion it is important that the local fields acting on the orientations of the molecules fluctuate
in time. Static local fields in the form of a frozen-in TRC favour an unrealistically high
order parameter.

In the cases (iii) and (iv), the translational degrees of freedom were set up according
to the fcc symmetry, so here the TRC is completely suppressed. When initially started
with a Pa3-symmetry-type ordering of the orientational degrees of freedom, case (iii),
the system does not ‘forget’ the initial configuration. In the case of a disordered starting
configuration taken from case (i), neighbouring molecules preferentially align parallel as
in case (i)—however, resulting in a slightly enhanced order parameter and with a much
less pronounced two-step relaxation. Even though for finite systems no difference between
zero-field-cooled and field-cooled cases exists, it turns out that between the ‘Pa3-field-
cooled’ configuration, case (iii), and the ‘zero-field-cooled’ configuration, case (iv), a large
energy barrier exists that cannot be surmounted within a large number of MC steps. This,
however, is possible if smaller samples containing 108 particles in total are considered.
One can conclude that the barrier increases with system size and hence, in infinitely large
systems, the barrier separating the (meta-)stable states becomes infinitely large. Note that
the ‘Pa3-field-cooled’ mixture loses its memory within approximatively 100 MC steps as
soon as the TRC is switched on again.

4. Discussion and conclusions

Lennard-Jones Ar1−x(N2)x mixtures have been studied with Monte Carlo techniques over
a wide range of temperature and N2 concentrationsx. The main points investigated
in this paper are the analogy between Potts glasses and orientational glasses, the local
orientational ordering, the stochastic dynamics of reorientational motion and the influence
of the translation–rotation coupling (TRC) on the phase diagram.

The mean-field theory (MFT) of the four-state Potts glass in three dimensions of Tadic̀
et al [11] describes the order parameterq(T ) for x = 0.33 andx = 0.67 well, if its
parameters are suitably adjusted. However, the replica-symmetric solution becomes unstable
at relatively low values forq(T ), so the good agreement between theory and simulation is
not yet really satisfactory. The strong effects of TRC on the properties (figure 4) indicates
that models such as that of equation (2), which do not include TRC effects on the Potts
spins themselves, are not really adequate for our system, at least if dynamic quantities are
considered. Using the MFT, nevertheless, a minimum in the elastic modulusC44 can be
deduced at temperaturesT ≈ 10 K in agreement with experimental data. However, the
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anomaly has been observed inC11 + 2C12. This might be due to the fact that the molecules
do not only align parallel to the space diagonals but also align parallel to the cubic main
axes, contrary to the MFT assumptions.

Nevertheless, the study of Potts models is very promising as regards understanding static
properties associated with the freezing-in process in orientational glasses. The mapping from
a realistic Hamiltonian, e.g. that given in equation (1), to a Potts model Hamiltonian, given
in equation (2), is one of the most important unresolved questions. In particular, it would
be desirable to obtain the first and the second moments of the coupling constantsJij and the
random fieldshi as functions of the concentrationx and the (realistic) microscopic expansion
coefficients as a function of distance between the lattice sites. This is an important task for
the future.

The evidence for a two-step relaxation in Ar1−x(N2)x mixtures is a new result which
can only be found in a quite narrow range of concentration below the critical concentration
xc, where long-range order sets in. For still lowerx the relaxation functions are broadened
and of stretched-exponential type (see [23]), but they are clearly one-step processes. It
would be interesting to know whether these findings can be reproduced in experiments
by measuring the central peak. In order to provide the experimentalist with more precise
information, a molecular dynamics study based on more realistic potentials would have to
be performed. These studies, however, would be even more CPU time intensive than the
studies presented here, because the successive configurations in molecular dynamics studies
are more correlated than in MC simulations and because the use of more realistic potentials
decreases computational speed by approximately a factor of ten.

Another important finding presented here is the intensity with which the TRC influences
the phase diagram and the orientational correlation functions. No more significant
reorientational motion is possible when the translational degrees of freedom are constrained
to their thermal equilibrium positions. The constraint mentioned restricts the system to
moving only in one or in a few local minima of potential energy. When the translational
degrees of freedom are constrained to the ideal fcc-lattice positions, thePa3 ordering
becomes at least metastable even for concentrations as low asx = 0.7. The approach in
which TRC is considered as a small field acting on the orientational degrees of freedom
therefore should be revised, at least for the present system.
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