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The stability of two recently suggested crystalline structures arising from compressing quartz is
investigated. One phase, called quartz II, is obtained by compressing a model of quartz to pressures
P slightly above 22 GPa. The second phase is obtained by shock compressing the quartz II sample
to P = 50 GPa. The new structure is a modulated structure of quartz II and the corresponding
phase is called quartz IIm. We observe strong size effects or compatibility effects above 26 GPa. If
the initial system consists of 360 or 720 SiO2 units, an ‘ideal’ quartz II structure remains stable up
to 30 GPa, while a larger system of 864 SiO2 units shows modulations of the quartz II structure
when compressed above 28 GPa. On decompression from the 50 GPa sample, the larger system
appears to be more stable than the smaller system, for which the incompatibility of the intrinsic
modulation with the box geometry apparently leads to large fluctuations of the cell geometry.

PACS numbers: 61.50.Ks, 81.30.Hd, 83.80.Nb

I. INTRODUCTION

Pressure-induced phase transformations in silica, SiO2,
have been widely studied by fundamental solid state
physicists and chemists and are of great interest because
of its importance in material science and technology. As
a result, experimental observations of a number of dif-
ferent high-pressure silica polymorphs yet unidentified
have been reported within the last decade1–7. Despite
its simple chemical composition, silica shows rich poly-
morphism at elevated pressures and temperatures. The
details of the silicon distribution among free positions
in the oxygen network strongly depends on the starting
sample and the conditions of treatment, but a general
trend is that at pressures above 40-45 GPa most of the
silicon atoms occupy octahedral positions while the oxy-
gen atoms form hcp sublattices. On the other side at am-
bient to moderate pressures, i.e. 9 GPa or less, silicon is
typically tetrahedrally coordinated by oxygen. The first
of the two cases mentioned above could be described as
a concentration modulation of the silicon sublattice over
the monoclinically distorted hcp oxygen sublattice. The
existence of high kinetic barriers related to the transfor-
mations to octahedrally coordinated stable silica phases
arise the coexistence of metastable low and high-pressure
crystalline phases with amorphous forms8–16.

Three years ago Haines et al.5 found experimentally
after fast compression of an initial α-quartz sample to
45 GPa the presence of a new crystalline phase later
characterized by the symmetry group P21/c. Almost
at the same time Dubrovinsky et al.4 by compressing
cristobalite XI at ambient temperatures obtained an α-
PbO2-type silica made of 2 x 2 kinked chains of SiO6

octahedra with a very similar structure to the one re-
ported by Haines et al.5. In a recent paper17, the current
and additional authors reported, after performing molec-
ular dynamics simulations (MD) of quartz II under fast
compression at 50 GPa, a new phase which was similar
to quartz II but appeared to be modulated in a non-
systematic fashion. This phase was called quartz IIm and

the speculation was that the system might want to have
an incommensurate modulation of the lattice. These cal-
culations are certainly very speculative, since they were
based on model potentials that have been optimized for
low-pressure SiO2 (see discussion below). However, the
analysis of the phase behaviour of a model potential of-
ten has an interest in its own right, among other reasons,
because similar behaviour might be observed in systems
with related coordination changes.

As stated, this new phase seems to be a modulated
version of quartz II that was interpreted as a probably in-
commensurate modulation of the lattice, which is pinned.
The long wavelength associated with the lattice modula-
tion makes it unfeasible for ab-initio calculations to tackle
the stability of quartz IIm. In the present manuscript
a more extensive description of this new phase will be
offered by analyzing the structure factor S(E) and its
mechanical stability by applying the Born criterion at
finite pressures18. MD simulations based on the model
potential proposed by van Beest, Kramer and van San-
ten (BKS)19 were performed. While not being perfect,
BKS shows good agreement when comparing the high-
pressure structures generated by this simple potential to
sophisticated potentials20–22 and ab-initio simulations11.

Since we speculated that the modulation in quartz IIm
is incommensurate, it is necessary to analyze the effect
of system size. Initial runs did not show any size depen-
dence, but increasing the original quartz sample in the z
direction revealed qualitative changes in the simulation
results. The difference between runs of different system
size is the subject of this paper. In the next section, we
will quickly review the methods used and provide some
details of the simulation runs. Section III presents the
results and the conclusions can be found in section IV.

II. METHODS

In this study, standard MD techniques were imple-
mented with the aid of the BKS model potential op-
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timized for four-coordinate silicon. All the simulations
were performed at constant external isotropic stress, kept
constant within the Parinello-Rahman method23 for the
box dynamics. Small values of the box inertia were cho-
sen to guarantee that the fluctuations of the box shape
occurred on a barely larger time scale than those of the
atoms. Moreover, the phase transformations reported
here can only be observed if the box geometry is allowed
to adjust quickly, because large box inertia lead to amor-
phization of the sample. We also want to note that a
Langevin thermostat was used in order to always quickly
find the next available energy minimum.

All ‘samples’ start out originally as α-quartz. In pre-
vious papers17,18,22, the size of the boxes was typically
chosen to be 6a, 4

√
3a, 5c in x, y, and z direction, re-

spectively, or alternatively 5a, 3
√

3a, 4c. Here a and c
denote the two independent lattice constants of α-quartz.
Between the two system sizes, no discrepancies in the
simulations could be observed other than the ‘typical’ size
effects, i.e., smaller systems smear out phase transitions
more strongly than larger systems24. Here, we will also
analyze a system with the initial size of 6a, 4

√
3a, 6c,

for which new behaviour is observed. In the following,
we will only compare the (6× 4× 5) box containing 2160
atoms and the (6 × 4 × 6) cell containing 2592 atoms.

As was mentioned before constant temperature was
maintained via a Langevin thermostat with coupling
γ = 4 THz. The time step was chosen to be 1 fs and
10,000 steps used to equilibrate a sample after a pres-
sure or temperature change. For more details, we refer to
Ref. 24. The structure factor S(E) was calculated follow-
ing the definition that appears in the classical literature25

capable of fitting the data reported within the Interna-
tional Tables for X-Ray Crystallography26. We tested
our results by first reproducing some of those published
by Wentzcovitch et al.27.

III. RESULTS

In a first step, using values for the temperature within
the range 200K-300K, different α-quartz cells were ex-
posed to high pressures following the path described by
the current authors in a previous work17 and an initial set
of quartz II configurations was obtained at P = 24 GPa.
Snapshots resulting from these runs are shown in Fig. 1.
We want to note the small difference in the structure be-
tween the small system shown in part (a) and the large
system shown in part (c). However, it seems to us, that
these subtle differences cannot be resolved experimen-
tally. The difference in the S(E), which is shown in
Fig. 2, is so small that we cannot resolve the difference
graphically between the 28 GPa small system and the
28 GPa large system in its initial compression run.

After equilibration, a shock compression up to 50GPa
was applied to each one of the quartz II configurations in
a second step. As noted before, increasing the pressure
quasi-adiabatically would have led to irreversible amor-

FIG. 1: (a) Snapshot of small system during compression or
decompression at 28 GPa. (b) Small system after compression
at 50 GPa. (c) Large system during compression at 28 GPa.
(d) Large system at decompression from 50 GPa.

phization of the samples. The newly obtaining crystalline
configuration were named quartz IIm type polymorphs in
a previous paper17. They appear to be a local modula-
tion of the quartz II structure. Their configurations at
50 GPa are shown in parts (b) and (d) of Fig. 1, each
showing a fraction of the small and the large simulation
cell, respectively.

There are no apparent, systematic differences in the
structure visible to the eye, which can be seen more
clearly when the full system is shown. We do not in-
tend to show the full systems here for reasons of space.
However, there are clear differences between the S(E)
for the small system at P = 28 GPa and the S(E) of the
large system after decompression at the same pressure.
The differences show in particular at small wave vectors.
Again, in the initial compression run coming from the
α-quartz phase, the S(E)’s related to the small and the
large system are almost identical to each other, while the
structures differ slightly as evidenced in Fig. 1 (a) and
(c). We want to note that at 50 GPa, the S(E) of the
two system sizes resemble each other very closely (and so
do the radial distribution functions, which are not shown
here). However, there is one characteristic discrepancy,
namely the peaks related to a momentum transfer ex-
pressed as 3.0 keV and 6.0 keV don’t show in the small
system.

When calculating also the coordination of the silicon
atoms by the oxygen atoms for each one of the phases
new differences arise. While the initial quartz II sam-
ples for both systems are 1/3 four-coordinated, 2/3 six-
coordinated, the quartz IIm systems at 50 GPa show a
1/9 five-coordination, 8/9 six-coordination. This coor-
dination ratio changes after decompressing the former
samples to 28 GPa, being the new relation 1/9 four-
coordinated, 8/9 six-coordinated for the big system and
1/3 four-coordinated, 2/3 six-coordinated for the smaller
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FIG. 2: Structure factor S(E) for the small box (identical for
compression and decompression run) and for the large box on
decompression. Upon initial compression, S(E) of the large
system is almost identical to that of the small system. The
peaks indicated with Q1 and Q2 correspond to the recipro-
cal lattice vectors (0.0465, 0.0271, 0.2522)Å−1 and (0.5152,
-0.0765, -0.0881)Å−1 respectively.

one.
Even though the difference in (free) enthalpy per atom

H = F + PV between the large and the small system is
relatively small, i.e., in the order of 0.01 eV at 50 GPa,
and much less different in the vicinity of 28 GPa, same
with the Helmholtz free energy F , the volume V and the
elastic properties show more striking effects. The P (V )
diagram is shown in Fig. 3 for the two system sizes. Ap-
parently, the larger system is denser than the smaller one,
however, the gain in PV is essentially compensated by an
extra expense in additional potential energy. Note that
the small system shows the transition back to quartz II at
about 30 GPa, which can be tested also by checking the
coordination numbers for the silicon atoms reported be-
fore; while the large system has a similar transition, also
to quartz II, at a pressure that is about 6 GPa lower.

As discussed in a previous paper17 by the current au-
thors and collaborators, even when the molar volume of
the decompressed quartz II at ambient conditions (17.8
± 0.2 cm3/mol) is similar to the molar volume of the
P21/c crystal reported by Haines et al.5 (14.02 ± 0.12
cm3/mol), the S(E) are quite different for both cases.
After performing the required comparison, it was shown
that the quartz II obtained in our simulations reproduces
the phase reported by Kingma et al.6 instead of the one
reported by Haines et al.

Lastly, we wish to discuss the elastic stability of the
various samples. A sample is mechanically stable at zero
pressure if the matrix of the elastic constants is positive
definite, which is called the Born stability criterion. At
finite pressures, the definition of elastic constants is not
unique and the proper generalization of the Born crite-

13.2 13.4 13.6 13.8 14.0 14.2
V [ cm

3 
 mol 

 -1
]

20

25

30

35

40

45

50

P
 [G

P
a]

big box
small box

FIG. 3: Equation of state for large box and small box. Both
runs are decompression runs.
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FIG. 4: Minimum eigenvalue of the Birch coefficients for the
large and the small simulation cell as a function of pressure.
Error bars are in the order of symbol size.

rion is to require the positive definiteness of the matrix
of the Birch coefficients. The smallest eigenvalue Bmin of
that matrix thus indicates whether the sample becomes
mechanically unstable. Between the large and the small
system, clear differences can be observed in Fig. 4. In
particular, both systems show a dip near the transition,
i.e., where the quartz IIm structure reverts to the ideal
quartz II structure. A final feature comes out when an-
alyzing the P (V ) and Bmin(P ) diagrams simultaneously.
As can be noticed whenever a discontinuity (jump) ap-
pears in the first graph a softening (dip) shows up in the
second one for the same value of P .
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IV. CONCLUSIONS

The stability of two recently suggested crystalline
structures arising from compressing quartz-like struc-
tures was investigated by molecular dynamics (MD) sim-
ulations. One phase, called quartz II, is obtained by com-
pressing adiabatically a model of quartz to P slightly
above 22 GPa. The second phase is obtained by shock
compressing quartz II to P = 50 GPa. The new phase has
a slightly modulated structure, which we call quartz IIm.
Two system sizes were compared in this study, i.e., one in
which the original α-quartz simulation cell was chosen to
be 6a, 4

√
3a, 5c, where a and c are the two independent

lattice constants of α-quartz, and another cell of length
6a, 4

√
3a, 6c along the x, y, andz axis, respectively. The

first choice is referred to as the small system, the second
choice as the large system. Smaller system sizes than the
ones used here all show the same behaviour as that of
the 6 × 4 × 5 box. We conclude that any (dramatic) ef-
fect in the simulation results between the small and the
large system can only be due to a compatibility issue, i.e.,
a modulation that the system wants to undergo intrinsi-
cally in the small system is prevented due to the interplay
of periodic boundary conditions and system size.

Strong size effects are observed at P above 26 GPa.
While both systems undergo the transition from α-quartz
to quartz II at a similar pressure, the large system is
starting to deform at approximately 28 GPa. The ob-
served structure modulations are irreversible when the
system is decompressed to smaller pressures. In both
cases, it is not possible to increase P slowly from 30 GPa

to higher values, because the samples amorphisize above
34 GPa. However, it is possible to shock compress the
samples up to 50 GPa without loss of long-range periodic
order. These structures can be decompressed adiabati-
cally. While snapshots of the large and the small box
look very similar, the small box misses two diffraction
peaks at Q1 = (0.0465, 0.0271, 0.2522)Å−1 and Q2 =
(0.5152,−0.0765,−0.0881)Å−1. The first wave vector
would be parallel to the z axis, if the cell were not sheared
with respect to the original α-quartz configuration. The
associated wavelength is too long in order to fit into the
small cell. Apparently, the mode associated with Q1 cou-
ples relatively strongly to the center of the Brillouin zone,
because the equation of state as well as Bmin show rela-
tively strong differences between the small and the large
system.

While we regard the analysis of the 50 GPa simulations
more as a generic analysis than as a realistic simulation
of SiO2, we believe that the modulations of the struc-
ture seen up to 28 GPa may be realistic as they could
be caused by electrostatic interactions. The former as-
sumption is based on the results of an independent study
able to show that BKS reproduces piezoelectric proper-
ties rather well22, thus giving confidence to the choices
of the effective charges associated with the silicon and
oxygen ions.
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