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Abstract. – It is commonly assumed that knowing the height auto-correlation function of
two solids in contact along with their materials properties is sufficient to predict the contact
pressure distribution P (p). We investigate this assumption with contact mechanics calculations
that are based on quickly converging Green’s function molecular dynamics. In our simulations,
elastically deformable solids are pressed against a rigid substrate. Their profile is either given
by experimental data or produced with random numbers such that the artificially generated
height spectra ressemble that of the real profiles. Randomly rough surfaces produce Gaussian
tails in the P (p)’s, while they are exponential for experimentally determined topographies. This
difference, however, does not affect significantly the true contact area, which, for the given real
profile is about 20% larger than that of the random surface. Both surfaces obey Persson’s
contact mechanics theory reasonably well.

Introduction. – Contact mechanics plays a crucial role in tribology. [1–4] For example, the
amount of wear that occurs under sliding depends, among other variables, on the distribution
of contact pressures. It has also been argued that Amontons’ law, the linearity of static
friction Fs and external load L, may often be the consequence of contact mechanics for the
following reason: Due to most real surfaces having roughness on many different length scales,
the pressure distribution in the real points of contact, P (p), can remain surprisingly invariant
over significant changes in L. [3, 6, 7] The main effect of increasing L would be to merely
increase linearly the area of contact Areal. Knowing or being able to predict P (p) is also useful
to determine the amount of plastic deformation, e.g., whenever the pressure p exceeds the
hardness of the underlying material, one may expect plastic deformation to occur. Knowing
pressure distributions may also be essential in predicting the friction coefficients and the
thermal conductivity of an interface.

Sophisticated, theoretical models for contact mechanics are based on the assumption that
roughness exists on many length scales [3,4,6–8]. Many times the focus is on self-affine topogra-
phies. This is because the height auto-correlation function of real surfaces, or more precisely,
the height-difference correlation function C2(∆r) often increases algebraically according to:

C2(∆r) =
〈

{h(r + ∆r) − h(r)}2
〉
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∝ ∆r2H . (1)

Here, h(r) is the height of a surface as a function of the in-plane vector r = (x, y), 〈. . .〉 denotes
a disorder average over the surface, H is called the Hurst roughness exponent (0 < H < 1),
and ∆r stands for the magnitude of the in-plane vector ∆r. The relation Eq. (1) typically
holds for length scales ∆r from about 1 nm up to 1 µm for highly polished surfaces and
even further for regular surfaces. [3, 5] Higher-order correlation functions are commonly not
considered to be relevant for contact mechanics. The surface topographies used in theoretical
models are thus a choice of convenience. Sometimes, Weierstrass functions are used, which
satisfy Eq. (1), or surface profiles are chosen at random, that is, they are chosen in such a
way that the Fourier transforms h̃(q) = h̃∗(−q) of the height function h(r) are independent
Gaussian random variables with zero mean. Their second moments C̃2(q,q′) = 〈h̃(q)h̃∗(q′)〉
obey: [9]

C̃2(q,q′) = h2
s (q/qs)

2H+1 Θ(qs − q)Θ(q − ql) δ(q − q′), (2)

where Θ(. . .) indicates the Heaviside step function which is unity for positive arguments and
zero otherwise, and δ(. . .) is the delta function. qs and ql are cutoffs in wave vectors at short
and long wavelength, respectively, i.e., ql ≤ q ≤ qs, and hs is the expected root mean square
of the roughness associated with the short wavelength λs = 2π/qs. It may be noted that
the diagonal elements C̃2(q,q) are proportional to the Fourier transforms of the real-space
correlation function C2(∆r).

In the recent past, enormous strides have been made to predict the pressure distribution
within contacts whose original surface profiles obey Eq. (1). The advances include a new
analytical theory by Persson and coworkers, [3, 4, 6] who calculate the pressure distribution
for elastic and elasto-plastic deformation in the case of both purely repulsive and adhesive
interactions between the two solids. Moreover, new numerical multi-scale approaches were
made by the same group [3, 6, 13] as well as by Robbins and coworkers. [7, 14, 15] Consensus
has been reached on some issues, e.g., at small L, linear scaling of Areal with L is established
for elastic, non-adhesive contacts. Both groups agree they are related via the root mean square
of the surface slope or putting it mathematically [6, 7], Areal and L obey the equation

Areal =
κ

√

〈

{∇h(r)}2
〉

L

E′
, (3)

where κ is a dimensionless proportionality coefficient. E′ = E/(1−ν2) is an effective modulus,
E being Young’s modulus and ν being the Poisson ratio. Disagreement persists as to whether
κ depends on the roughness exponent H or whether it is constant. Persson predicts a value of
κ =

√

8/π. Robbins and coworkers state values that are close to Persson’s prediction for H ≈
0.9, while κ is close to

√
2π for H ≈ 0.3. This latter value corresponds to the one predicted by

Bush et al., [10] who based their calculations on a phenomenological, stochastic model in which
asperities were described as paraboloid-shaped summits. There is also disagreement whether
the tails of the pressure distributions are Gaussian as in the theory [6, 13] or exponential as
found in simulations. [7]

Concerns have been raised that the numerical calculations were not converged to continuum
mechanics, i.e., when only a small fraction of the area is in microscopic contact, fully converged
calculations should obey the proportionality P (p) ∝ p at small values of p [4]. Also Hyun
et al. argued that their observed linear decrease of κ with an increase in H may have been
influenced by uncertainties in determining the true contact area. [7] Few simulations show the
P (p) ∝ p feature, which leaves the determination of the nature of the pressure tails and also
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the determination of the true contact area slightly ambiguous, as will be discussed in more
detail in the model section. It is worth noting that Robbins’ early method to discretise elastic
objects was done such that roughness persisted down to the length scale of grid points (atoms).
Such a procedure is certainly well motivated if one wants to know the distribution of forces on
atoms. However, as we are interested in testing the solutions of continuum mechanics models,
we shall try to mimic the continuum models as well as possible. This means that we will have
to use discretisations that are smaller than the shortest wavelength on which roughness is
found. It may be worth commenting that even the most advanced (and potentially accurate)
Greenwood Williamson model based calculations [11] cannot be used to validate the correct
value of κ, because any such treatment contains uncontrollable approximations.

In a recent paper by the present authors, it could be shown that Green’s function molecular
dynamics (GFMD) is an efficient tool to address contact mechanics of elastically deforming
solids, [12], i.e., GFMD may be better suited to produce pressure distribution functions for
static, elastic constants than the regular multi-scale approaches in which the three-dimensional
solids are represented on ever more coarse-grained scales as one moves away from the interface.
While some details of GFMD will be mentioned in the model section, we would like to refer
to the original literature [12] for a detailed discussion.

The main purpose of this letter is to analyze the properties of well-converged pressure
distributions in self-affine contacts that have the property displayed in Eqs. (1) and (2) by
making use of GFMD. At the same time, we would like to investigate whether the contact
mechanics of real surfaces resembles that of random surfaces. In particular, we would like to
assess whether the pressure distributions for real surface topographies are similar to those of
randomly rough surfaces.

Model and Methods. – In this study, we are concerned with the elastic, frictionless contact
between two solids with self-affine surfaces. Use is made of the possibility to map such a
system onto a model in which a flat elastically-deformable solid is pressed against a rigid,
corrugated substrate. [2] The model thus consists of a rigid substrate, which can either have
an experimentally determined topography or a numerically produced random height function
h(r). The other solid is a flat, discrete, elastic manifold, for which we chose both Lamé
constant to be unity, which is equivalent to a Young’s modulus of E = 2.5, a bulk modulus
of K = 5/3, and a Poisson number of ν = 0.25. In what follows, most stated quantities will
be dimensionless, however, when pressure is not made dimensionless, then it will be stated in
the unit of the Lamé constants.

Real surface topographies were obtained from atomic force microscopy (AFM) measure-
ments of a highly-polished steel surface that had been subject to rubbing. [16] Before perform-
ing the measurements the surface material was turned and lapped under a cooling lubricant.
The linear dimension of an AFM scan is L = 20µm. Data points were available on a square
grid with spacings of 10 nm. To reduce artifacts due to periodic boundary conditions, the
experimental h(r) data was corrected by terms linear and quadratic in x and y so that h(r)
became a continuous function at the boundaries. Between grid points, the height functions
were interpolated with second-order polynomials such that first and second derivatives of h(r)
were continuous. The two-point correlation functions of our real surface can be characterized
by a roughness exponent of H = 0.84 and cutoff ql = 10µm−1. The surfaces’ root-mean slope,
√

〈{∂h(x, y)/∂x}2〉, was 0.1891.

Random surfaces with the same value of H were produced such that they had, on average,
the same height power spectrum as that of the real surface. The random topographies were
generated by using a Gaussian filter technique for the h̃(q). [9] In those calculations, where
we do not make a comparison between real and artificial surfaces, we reduced the root-mean
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slope to 0.033. However, we kept the cutoff values in reciprocal space fixed and adjusted
the parameter hs in Eq. (2) for different values of H such that the root mean square slope
remained constant.

The elastic manifold was simulated with GFMD. In a nutshell, GFMD only requires the
simulation of an elastic sheet rather than that of a fully three-dimensional solid. The effective
interactions between the atoms in the sheet, i.e., the elastic Green’s functions, are chosen such
that the sheet mimics the full solid. The full solid is a simple cubic solid with springs between
nearest and next-nearest neighbors chosen such that a purely elastic medium is modeled, which
is isotropic at long wavelengths. One of the main advantages of GFMD is that relatively few
time steps are required for the elastic manifold to reach mechanical equilibrium. For more
details on the methodology, we refer to our previously published model paper. [12]

Interactions between the two opposed surfaces are modeled with hard-wall potentials. If
the z-coordinate of an atom belonging to the elastic slider at position (x, y) crosses through
h(x, y), the interaction energy increases from zero to infinity. The force that the hard-wall
exerts on a surface atom (grid point) in the upper solid was obtained from the internal forces
within the elastic manifold via a force balancing argument. As atoms are allowed to move
transversally, we also have to determine the area that each atom occupies. This is done via a
Voronoi construction. (For the surfaces investigated here, it turns out that the contact area
would be overestimated by a little less than 2% if each atom in contact had been assigned a
mean-field value for the contact area.)

Results. – The central quantity in this study is the pressure distribution in the contact.
The full pressure distribution Pf(p) consists of a δ-peak at p = 0, which is due to those areas
that are not in contact and the distribution P (p) averaged in the true contact points, i.e.,

Pf(p) =
A0 − Areal

A0

· δ(p) +
Areal

A0

· P (p), (4)

where A0 is the apparent or macroscopic surface area. For interactions with finite-range the
delta peak will be broadened and it is not possible to define rigorously where contact exists.
However, for hard-wall interactions use can be made of Eq. (4) to determine Areal, provided the
histograms are converged, which is the case when P (p) does not change (significantly) when
the number of grid points in the elastic manifold is further increased. For small ratios Areal/A0,
a well-converged pressure histogram (in the sense of a continuum description) shows P (p) ∝ p,
which is also found in an individual Hertzian contact. For a more in depth discussion, we
refer the reader to Refs. [3, 12,14].

In Fig. 1, we compare the pressure distribution for real and ideal topographies for values
of the load in which approximately 2% and 10% contact was established after equilibration.
While the P (p)’s do not vanish completely in the limit p → 0 at the employed discretisation
of the elastic body (N = 2048× 2048), they are sufficiently well converged for the conclusions
to be drawn in the subsequent paragraphs, as careful size analysis showed. The calculations
are compared to the theory by Persson [6]. For this purpose, use was made of the analytical
solution for the pressure distribution in the low-load limit, see Eq. (14) in Ref. [7].

The main difference between the graphs for artificially constructed and for real topogra-
phies is that the artificial surfaces produce Gaussian tails while the real topographies lead
to exponential tails. This observation may settle the debate in the literature whether or not
the distribution are Gaussian or exponential. Persson’s theory predicts Gaussians, which is
supported by our results for the Gaussian random surfaces, see also our previous results on
full contact, [12] where the analytical solution for P (p) in full contact [13, 17] was found to
perfectly match our results. For the low-load limit, it was argued that exponential tails may be
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Fig. 1 – Pressure distribution P (p) in the contact regions for (a) ideal and (b) real surfaces shown
at two different relative contact areas A/A0. Real and ideal topographies have similar two-point
correlation functions C2(∆r). Black and grey symbols reflect roughly 2% and 10% relative contact
area, respectively. The main graphs are lin-log plots and span the same domains in abscissa and
ordinate. Insets are linear plots of the same data as in main figure. Comparison is made to Persson’s
contact mechanics theory.

the consequence of insufficiently converged calculations [4]. Indeed, we find that the P (p) for
artificial random surfaces look exponential as long as the grid spacing of the elastic manifold
∆a is equal to or larger than the smallest wavelength λs on which roughness exists. Con-
versely, the P (p) for real surfaces become even more clearly exponential when ∆a is decreased
below λs.

Once the P (p)’s are accumulated, it is possible to extract the true area of contact. Results
are presented in Fig. 2, where the relative contact Areal/A0 is shown as a function of load.
As observed in previous numerical studies [7, 13], linear behavior is found when the relative
contact is less than roughly 10%. For the real contact topographies, the relative contact turns
out to be about 20% larger than that of the ideally random surfaces. Despite this discrepancy,
the pressure distributions for both types of surfaces remain rather invariant under a change
of load that increases the relative contact from 2% to 10%.

The slightly increased contact area for real surfaces can be understood as follows: The
worn-off asperities are less curved than the valleys. Since in small relative contact, the elastic
manifold only samples the top of the asperities and not the valleys, greater contacts must be
expected. Quantitatively, one can estimate the magnitude of the effect by comparing the root
mean square slopes, i.e., 〈(∇h)2〉1/2, averaged over those areas where the curvature is negative
to those averaged over positive surface curvature.

The slopes of the Areal(L) graphs at small L in Fig. 2 yield the dimensionless propor-
tionality coefficient κ that relates the true contact area with the load. κ was introduced in
Eq. (3). The results of our simulations are shown in Fig. 3. Three different values for the
roughness exponent were considered, H1 = 0.2,H2 = 0.5, and H3 = 0.8. It is found that for
all three values of H, κ lies in between the predictions by Bush and Persson. Our results
match those of Hyun et al. [7] reasonably well, although the change of κ with H is smaller



6 EUROPHYSICS LETTERS

0.01 0.1 1
L/(E’A0<|  h|

2
>

1/2
)

10
-2

10
-1

10
0

A
re

al
/A

0

self-affine surfaces 
real surfaces 

∆

Fig. 2

0 0.2 0.4 0.6 0.8 1
H

0.0

0.5

1.0

1.5

2.0

2.5

κ(
H

)

0.0000 0.0004 0.0008 0.0012N
-0.7

2.0

2.2

2.4

2.6

2.8

κ 

κ (H=0.2) = 2.09

κ (H=0.5) = 2.05

κ (H=0.8) = 1.98

Bush et al.

Persson

8
8

8

Fig. 3

Fig. 2 – Contact area ratio, A/A0, versus applied load L. Linearity is observed for contact area ratios
up to 10%. The discretisation of the elastic manifold is N = 2048× 2048 so that the discretisation is
λs/64.

Fig. 3 – κ as a function of H. The values predicted by Bush et al. and Persson are plotted with
dashed lines. Our results are represented with solid squares. Convergence with discretisation of the
elastic manifold is analyzed in the inset.

in our work. However, the value of κ for H = 0.5 is very close to that recently stated by
Hyun and Robbins [19]. The discrepancy between our and Hyun et al.’s previous result may
be due to Hyun et al.’s former choice to keep the elastic manifold discrete at a length scale
2π/qs and perhaps in part due to different choices for the Poisson ratio. Keeping surface
roughness down to the discretisation of the elastic medium leads to a slight overestimation of
Areal in particular at small values of H, where more roughness is on short length scales than
for large H. It is yet interesting to note that extrapolation to rather accurate estimates for
converged contact areas can be done at relatively moderate number of particles. We find that
the leading-order corrections to the relative contact scale with N−0.7 and that it appears to
be possible to extrapolate to the continuum limit from data obtained with relatively moderate
system sizes.

Conclusions. – In this work, we used our recently implemented GFMD technique [12]
to study open questions evolving around the contact mechanics of elastic solids with self-
affine surface roughness under the action of external loads. Special emphasis was given to the
question how the pressure distributions and the true areas of contact differ between surfaces
having either randomly self-affine or experimentally-measured topographies if their materials
properties (that is, their elastic modulus) and their height power spectrum are identical.

Our results on the contact area of randomly-rough surfaces lie in between the predictions
by Persson [3, 6] and those by Bush [10], which underestimate and overestimate the contact
area by roughly 20%, respectively. Given that Persson’s theory is less phenomenological than
that of Bush and that generalizations, for instance to adhesion and dynamics, are more easily
incoroporated, we have focused our attention to a comparison with Persson’s theory, which
predicts the functional form of the pressure distribution in a contact reasonably well.

While the net contact area of our artificial and the real surface are roughly similar, there
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are qualitative differences in the tails of the distributions. We find that the ideally random
surfaces produce Gaussian tails, while the real surfaces produce exponential tails. It is thus
more likely to have very large pressures for surfaces with real topographies than for idealized
random profiles. Yet, in both cases, it appears to be the case that the pressure distribution
changes relatively little in the small load limit, in which the real area of contact grows linearly
with the load. This observation supports the argument that contact mechanics of randomly
rough surfaces can be hold responsible for Amontons’ law [3], however, it does not rule out the
argument that a constitutive law that relates normal and shear stress linearly can also lead
to Amontons’ law as argued in Ref. [20], in particular in those cases where surface profiles are
not self-affine.
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