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Contact between an elastic manifold and a rigid substrate with a self-affine fractal surface is
reinvestigated with Green’s function molecular dynamics. The Fourier transforms of the stress and
contact autocorrelation functions (ACFs) are found to decrease as |q|−µ where q is the wavevector.
Upper and lower bounds on the ratio of the two correlation functions are used to argue that they
have the same scaling exponent µ. Analysis of numerical results gives µ = 1 + H, where H is
the Hurst roughness exponent. This is consistent with Persson’s contact mechanics theory, while
asperity models give µ = 2(1 + H). The effect of increasing the range of interactions from a hard
sphere repulsion to exponential decay is analyzed. Results for exponential interactions are accurately
described by recent systematic corrections to Persson’s theory. The relation between the area of
simply connected contact patches and the normal force is also studied. Below a threshold size the
contact area and force are consistent with Hertzian contact mechanics, while area and force are
linearly related in larger contact patches.
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I. INTRODUCTION

The distribution of pressures in the contact between two solids has a crucial influence on the amount of friction
and wear that occur when the solids slide against each other. As a consequence, there is great interest in reliable
predictions for the dependence of the distribution on the externally imposed load L, the mechanical properties of
the solids in contact, and their surface topographies1. Of course, it would be desirable to have theories at hand that
allow one to calculate these distributions analytically or numerically at a moderate amount of computing effort. While
solving numerically the full elastic or plasto-elastic behavior of contacting solids has become an alternative to studying
analytical theories, numerically exact approaches incorporating long-range elastic deformation remain challenging to
pursue. 25 This is because treating the wide range of length scales present in most surface topographies places great
demands on computing time and memory.

Traditionally, many contact mechanics predictions were based on models following Greenwood and Williamson’s
(GW) seminal paper2, in which the contact between two solids is treated as the sum of non-interacting, single-asperity
contacts. The crucial, geometric properties entering such theories are the statistics for asperity height and curvature.
One of the most detailed treatments is by Bush et al.3 who included a distribution of curvatures and elliptical
asperities. In the last decade, Persson and collaborators have pursued a different approach4–7, in which the height
autocorrelation function (ACF) is the geometric property that determines the pressure distribution and thereby the
area of contact.

A central quantity in both GW and Persson’s theory is the ratio of the real area of microscopic contact Ac to the
macroscopic projected area of the surfaces A0. In the limit of low loads, both theories find that

Ac

A0
= κ

σ0
√

〈∇h2〉E′
(1)

where κ is a dimensionless constant of proportionality, σ0 ≡ L/A0 is the mean pressure normal to the interface,
√

〈∇h2〉 is the root mean-square gradient of the height profile h, and the effective elastic modulus E ′ = E/(1− ν2),

where E is the Young’s modulus and ν the Poisson ratio. The generalization of GW by Bush et al.3 predicts κ =
√

2π,
while Persson theory yields κ =

√

8/π. Numerically exact calculations for the relative contact area Ac/A0 for solids
with a self-affine surface topography are, give or take, half way between the two theoretical predictions8–10.

Persson’s theory also provides a prediction for the functional dependence of the stress distribution P (σ), which can
be described as the sum of a Gaussian of width ∆σ centered at the macroscopic pressure σ0 and a mirror Gaussian
centered at −σ0:
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A δ-function contribution is added to P (σ) so that the integral over P (σ) from σ = 0 to σ = ∞ yields unity. The
prefactor to this δ-function contribution (divided by the normal macroscopic stress) can be interpreted as the relative
area of the projected surface that is not in contact with the counterface. For the relevant non-negative pressures, the
superposition leads to P (σ) ∝ σ for small σ and Gaussian tails at large σ. GW theory gives distributions with similar
limiting behavior. Numerical solutions for P (σ) are qualitatively consistent with Eq. 2 when the parabolic peaks of
asperities are resolved9,10, but some quantitative discrepancies remain as illustrated in the next section.

GW-type theories and Persson theory give quite distinct predictions for the spatial distribution of contact and
pressure. Contact in GW is based on overlap of undeformed surfaces. This allows one to relate the contact ACF,
Cc(∆r), to the surface topography. Cc(∆r) gives the probability of finding contact at a coordinate r if there is contact
at a coordinate r

′ = r + ∆r that is located at a distance ∆r = |∆r| away. In contrast, Persson’s theory contains a
prediction for the stress ACF, Cσ(∆r). Both GW and Persson theory predict power law scaling for the correlation
functions, but with very different exponents. In a numerically exact calculation, Hyun and Robbins found that Cc

and Cσ appear to decrease algebraically with ∆r in such a way that the two functions are essentially proportional
to one another10. The values for the exponents that describe the decay of the autocorrelation functions were again
found to be, give or take, half way between the theories. However, due to computational limitations, the uncertainty
on the exponents was relatively large and only H = 0.5 was studied.

Here, we would like to reassess these correlation functions with Green’s function molecular dynamics (GFMD)11,
which allows one to address larger system sizes than with finite-element methods or multiscale approaches12. One of
our main goals in these calculations is to assess whether the relatively precise values of κ predicted by GW and Persson
theory are to a certain degree fortuitous or if the theories also predict other computable observables, specifically stress
and contact ACFs, with similar accuracy, i.e. of order twenty percent. We derive approximate and exact bounds
on the ratio of these ACFs and their integrals that supplement the numerical results. The work presented here
also includes a test of the claim that corrections to Persson’s theory can be derived with the help of a systematic
expansion scheme derived recently by one of us13. The expansion has so far only been worked out (to harmonic
order) for walls that repel each other with forces that increase exponentially when the distance between the surfaces
decreases. Therefore, we also include comparison to numerically exact simulations based on exponentially repulsive
walls. Finally, we conduct an analysis of connected contact patches for hard wall interactions to see if these regions
show the characteristic behavior of Hertzian contact mechanics, as one would expect according to an overlap theory
of purely repulsive, corrugated walls.

The remainder of this paper is organized as follows. In section II, the GFMD is quickly introduced. In section III,
bounds on the correlations are derived and numerical results for scaling behavior presented. Conclusions will be drawn
in section IV.

II. METHOD

In this work, we model elastic, frictionless contact between two solids with self-affine surfaces. Use is made of the
mapping of such a system onto contact between a flat elastically-deformable solid and a rigid, corrugated substrate14.
The Green’s function molecular dynamics (GFMD) method11 was used to solve for the elastic response of the de-
formable solid. Details of this method are provided in Ref.11 and we only give the parameters of the model here.
We chose both Lamé constants to be unity, which is equivalent to a Young’s modulus of E = 5/2, a bulk modulus
of K = 5/3, and a Poisson ratio of ν = 1/4. In what follows, most stated quantities will be dimensionless, but we
take the Lamé constants as our unit of pressure. The continuum equations have no intrinsic length scale, so we will
normalize lengths by the lateral resolution a of the GFMD.

The surface topography of the rigid substrate was a self-affine fractal. Surfaces with the desired value of the Hurst
roughness exponent H were created using a Gaussian filter technique for the Fourier components of the height profile
h̃(q)15. The long wavelength cutoff of fractal scaling λl is always identical to the length of our periodic simulation cell
in both lateral directions. The effect of reducing λl is discussed in Ref.10. Unless noted λl/a = 4096. The effective
depth of the deformable solid is also equal to λl. The short wavelength cutoff λs was varied from a to 64a. The
wavevectors associated with the cutoffs and resolution are denoted as ql = 2π/λl, qs = 2π/λs, and qa = 2π/a. The

magnitude of the Fourier components was adjusted to maintain the same mean-square height gradient
√

〈∇h2〉 = 0.031
for all λs and H.

A wide range of parameters was considered. The roughness exponent was varied from 0.3 to 0.8, which covers the
range of values typically reported in experiments16–19. The load was varied between 0.001 and 0.256, resulting in
fractional contact areas fc ≡ Ac/A0 between 0.02 and 0.96. For each case we evaluated the spatial variation of the
contact pressure σ(r). Then the total contact area Ac, probability distribution P (σ) of local pressures, and contact
and pressure correlation functions were calculated. Since P (σ) enters the analysis below, we show typical results in
Figure 1, along with the analytic expression of Eq. 2. For this case λs >> a, implying that the top of each asperity
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FIG. 1: Pressure distribution P (σ) for a system with λl = 64λs = 4096a at a relative contact area of fc = Ac/A0 = 0.08. The
line is a fit with Eq. 2. From the area and load we find κ = 2.06 (Eq. 1) with an absolute uncertainty due to finite resolution
of less than 0.1.

is resolved into a smooth parabolic peak. As a result, P (σ) drops as σ decreases to zero. Extending the roughness to
λ = a changes the form of P (σ) at large and small σ, but does not change the power law behavior of the correlation
functions at small q that are our focus here10.

The contact ACF, Cc(∆r), is defined as

Cc(∆r) = 〈Θ{σ(r)}Θ{σ(r′)}〉 (3)

where ∆r = |r−r
′| and σ(r) is the normal component of the stress at position r.26 The Heaviside step function, Θ(...),

is zero for negative and unity for positive arguments. However, unlike the usual convention, we choose Θ(0) = 0, i.e.,
the step function is unity only at those locations where there is contact. The stress ACF is similarly defined as:

Cσ(∆r) = 〈σ(r)σ(r′)〉 , (4)

The ACF are most conveniently calculated by Fourier transforming. We choose the normalization so that

C̃σ(q) = 〈σ̃∗(q)σ̃(q)〉 . (5)

III. RESULTS

A. Relation between contact and stress autocorrelation functions

Traditional models ignore correlations in surface displacement due to elastic deformation so that the location of
contacting regions is determined solely by the local height. We will refer to such models generically as ”overlap
models”. A particular overlap model is the bearing area model14 in which contact occurs wherever the undeformed
solids would overlap. For the case of rough on flat considered in our calculations, this corresponds to the region where
the height of the rough solid is above a threshold value. In the GW model and extensions2,3, the same criterion is
used to determine which asperities are in contact, and the corresponding load is obtained from the force needed to
remove overlap. Since contact only depends on the local height in such models, it is relatively easy to construct the
contact morphology for any given surface topography. One can then calculate the relative contact area and Cc(∆r).

Since the location of contacts is entirely determined by the height in the bearing area and GW model, Hyun and
Robbins argued that Cc should have the same scaling as the height-height correlation Ch

10,15:

C̃c(q) ∼ C̃h(q) ∼ q−2(1+H). (6)

Their numerical results for H = 0.5 were consistent with this relation. We are not aware of any specific predictions
for the stress ACF in the GW model, although it might also follow Ch since the stress on asperities is also determined
directly by their height.
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In contrast, Persson’s scaling theory does not consider Cc, but contains implicit predictions for the stress ACF. In
the limit of complete contact, Persson theory becomes exact. The stress correlation function can be determined from
the height correlation function and the elastic Greens function. The latter scales as q2, yielding C̃σ ∼ q−2H20. This
result is consistent with numerical studies of full contact21. The original version of Persson theory does not discuss
stress ACFs in partial contact explicitly. One may thus be tempted to use the full contact approximation for the
stress ACF at all loads. However, when contact is not complete, only a fraction of the elastic manifold conforms
to the counterface and so the full contact ACF only provides an upper bound, as the non-conforming parts of the
manifold do not carry any load. After receiving a preprint of our work, Persson informed us that a correction factor
needs to be included into the calculation to capture this effect22. This correction factor is the relative contact area at
a given “magnification”, i.e., one needs to correct with the relative contact area f(q) that his theory would predict if
all roughness for wavevectors of magnitude greater than q were eliminated. (This correction factor had already been
introduced for the calculation of adhesive interactions in earlier work5.) With this correction factor the exponent
µσ = 1 + H is obtained in Persson theory for partial contact. In particular,

C̃σ(q) =
E′2

4
q2C̃h(q)

︸ ︷︷ ︸

∼q−2H

· f(q)
︸︷︷︸

∼q−(1−H)

∼ q−(1+H) (7)

where the first term is the full contact prediction and f(q) ∼ q−(1−H) 5,22.
While the power laws in Equations 6 and 7 are very different, it is not clear how the scaling of the stress ACF and

contact ACF should be related. In the following we argue that two approximate bounds on the ACF’s force them to
have the same scaling exponents. In particular,

Cc(∆r) ≤ 1

σ2
c

Cσ(∆r) ≤
〈
σ2

〉

c

σ2
c

Cc(∆r) ≈ 2Cc(∆r), (8)

where σc = 〈σ〉c and
〈
σ2

〉

c
are the mean and second moments of the stress averaged over those areas where there is

contact, i.e.,

〈σn〉c =

∫∞

0+ dσ σnP (σ)
∫∞

0+ dσ P (σ)
. (9)

In cases where the stress histogram, P (σ) = 〈δ{σ − σ(r)}〉 can be described by equation (2), one can easily find
that 〈σ2〉c/σ2

c = 2. The same ratio is obtained for the approximately exponential distribution of pressures found for
surfaces with λs = a8. Similar ratios are obtained for the other λs considered here, leading us to add the approximate
equality at the right of Eq. 8.

In the limit ∆r → 0, the stress ACF is exactly equal to the upper limit of Eq. 8: Cσ(0) ≡ 〈σ2〉c. In the large
∆r limit, the local values of the stress should become decorrelated, and Cσ will then equal the lower limit. One
expects a smooth crossover between the two bounds as ∆r increases unless there is a strong correlation at some given
wavelength. For example, one can construct counterexamples to the bounds such as a perfectly sinusoidal surface
topography.

Figure 2 presents typical numerical results for the ACF’s of self-affine surfaces. Values of Cσ lie close to the upper
bound up to ∆r ∼ 8a, and then cross over rapidly to the lower bound. A heuristic reason for the more rapid drop in
Cσ than Cc can be constructed as follows. Consider the contribution to these two ACFs that stem from two points r

and r
′ that are in the same contact patch, for example, within a single Hertzian contact. The contribution to Cc(∆r)

will simply be unity, i.e., Cc(∆r) cannot decay within a simply-connected contact region. Conversely, Cσ(∆r) can and
will have a lot of structure, e.g., the correlation between the stress at the center and edge of a Hertzian contact will
be small. Consequently, a significant fraction of Cσ(∆r) will have decayed on a length-scale ∆r that is comparable
to a typical contact radius, while only a very small fraction of Cc(∆r) will have decayed on that same distance. Note
that the rapid decay in Fig. 2 starts at ∆r/λs ∼ 1/8 which should be comparable to the smallest contacts. Since
contacts of many different sizes are found, one may conjecture that Cσ(∆r) falls off faster than Cc(∆r) for all ∆r. The
difference should decrease at large ∆r as the number of connected clusters with dimension greater than ∆r decreases.

Fig 3 illustrates that the same upper and lower bounds describe the Fourier transforms of the correlation functions.
Data for a range of H and relative areas are shown. In each case there is a crossover from the lower bound of Eq. 8
at small q (large C̃) to the upper bound at large q.

One can derive additional relations for the Fourier transforms of the ACF’s that support the bounds quoted above.
First, the q = 0 values must obey:

C̃c(q = 0) = |ΣrΘ(σ(r))|2 = [NAc/A0]
2

(10)

C̃σ(q = 0) = |Σrσ(r)|2 = [NσcAc/A0]
2

, (11)
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FIG. 2: (Color online) Stress autocorrelation function (ACF) Cσ(∆r) in real space for H = 0.3 and comparison to the upper and
lower bound estimates of the stress ACF via equation (8) and the contact ACF Cc. Here λl = 64λs = 4096a and Ac/A0 = 0.14.
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FIG. 3: The stress autocorrelation function C̃σ(q) normalized by σ2

c as a function of C̃c(q). The two straight lines reflect the
inequalities from equation (8).

where N is the number of r (or real-space grid points) in the sum. This shows that in the limit q → 0 the correlation
functions satisfy the lower bound in Eq. 8. One can also use a general sum rule over real and reciprocal space to
write:

ΣqC̃σ(q) = Σq|σ(q)|2 = NΣr|σ(r)|2 = 〈σ2〉cN2Ac/A0 (12)

and similarly

ΣqC̃c(q) = N2Ac/A0. (13)

The last two equations show that the sum over all q of the ACFs is exactly consistent with the upper bound in Eq.
8. While this implies that the upper bound must be exceeded for some q, we will see that the sum is dominated by
large q where the upper bound is nearly obeyed. Our focus is on the power law scaling regime in the opposite limit
of small q.
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In order to collapse data for different loads it is useful to recast the above sum rules. It is also helpful to eliminate
the q = 0 term since we will see that the ACFs diverge in the limit q → 0. In addition, the q = 0 term scales as
(Ac/A0)

2, while other terms scale linearly with Ac/A0. Subtracting Eq. 11 from Eq. 13 and rearranging factors we
find:

Σq 6=0fcC̃c(q)/(1− fc)C̃c(0) = 1, (14)

where fc = Ac/A0. We will see that scaling C̃c in this way removes the dependence on fc at small fc. Evaluating the
same weighted sum for the stress ACF yields

Σq 6=0fcC̃σ(q)/(1− fc)C̃σ(0) = [〈σ2〉c/σ2
c − fc]/[1− fc] > 1. (15)

Using the same scaling of the two ACF’s guarantees that they coincide as q → 0. While C̃σ will decay more slowly
at large q, the fact that its integral over all q is larger by only a factor of order 2 for any system size implies that C̃σ

should be described by the same scaling exponent as C̃c.

B. Comparison to overlap theories

Figure 4 compares results for C̃c from the full GFMD calculation and the GW model which uses overlap to determine
contact. Both models yield roughly power law behavior at intermediate q

C̃c(q) ∝ q−µc . (16)

However there is a large discrepancy in the numerical values between GFMD (µc ≈ 1.3) and the bearing area model
(µc ≈ 2.8), which one can conclude from figure 4. A similar difference in the values for µc is observed for other H and
λs, as reported for H = 0.5 in Ref.10. There is a simple physical reason that overlap models yield larger µc and thus
cluster the contact patches too closely. They neglect the fact that an asperity in the vicinity of a very high asperity
is less likely to come into contact because it is pushed down when that very high asperity comes in contact with the
counter-surface6,8,10,23.
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FIG. 4: The contact ACF, C̃c(q), as a function of wavevector q divided by the long wavelength cutoff ql. Predictions from the
bearing area model and GFMD calculations are shown for a Hurst roughness exponent of H = 0.3. Here λl = 2048λs = 2048a
and Ac/A0 = 0.09. The lines reflect power laws in q.

In all cases, our numerically determined exponent for the bearing area model is consistent with the estimate
µc = 2(1 + H), within our uncertainty of ∼ 0.25 for this model. In contrast, the GFMD results are consistent with
µ = 1 + H within an uncertainty of ∼ 0.1. The reason for the difference in the uncertainties of our estimates stems
from the fact that contact geometries associated with large µc have large finite-size effects, particularly when µc
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exceeds two.27 This is because a large value of µc implies significant contributions from long wavelengths, which have
less sampling than short wavelengths, as can be seen from an analysis of Cc(r):

Cc(r) =

∫

d2q C̃c(q) exp(−iq · r) (17)

∼
∫ λl

a

dqq1−µc

∫ 2π

0

dθ exp(−iqr cos(θ)) . (18)

For µc < 2 the contribution at small q is finite. One can change the integration variable to qr and finds:

Cc(∆r)− Cc(∞) ∝ ∆r−νc (19)

at large ∆r with νc = 2− µc. This is the type of behavior we find for our numerical solutions, i.e. Fig. 2.
The behavior becomes qualitatively different if µc > 2 as predicted by the µc = 2(1 + H) > 2 relation for the

bearing area model. This implies a singular contribution from small q in Eq. 18 and suggests that Cc(∆r) should
increase with ∆r. The origin of this behavior seems to be related to the distribution of sizes of connected regions in
the bearing area model. The probability that a cluster will have area ac is predicted15 to scale as P (ac) ∼ a−τ

c with
τ = (2 −H/2). Since τ < 2, most of the contact area is in the clusters of largest size, and there will be no decay in
Cc(∆r) on this scale. The dominance of large clusters leads to significant fluctuations in data for the bearing area
model that are not seen in the numerical solution with GFMD. We conclude that the bearing area model and thus
GW provide a very poor description of the contact ACF.

C. Numerical Determination of µ

To determine accurate values of the scaling exponents describing the ACF’s we maximized the scaling region by
taking λs = a. Our results and earlier work10 show that resolving the asperities is not important to the large scale
behavior of interest here. Figure 5 shows results for C̃σ and C̃c at H = 0.3, H = 0.5 and H = 0.8. In each case, data
for two different area fractions, corresponding to about 4% and 8% have been collapsed by plotting fcC̃(q)/(1−fc)C̃(0)
following Eq. 14. With this rescaling, the data for the two loads are indistinguishable. This is consistent with previous
numerical work that indicates area fractions of less than 10% exhibit scaling behavior consistent with the asymptotic
small fc limit8,10,23.

FIG. 5: (Color online) Comparison of the stress (open symbols) and contact (closed symbols) ACF’s for H = 0.3, 0.5 and 0.8 from

top to bottom. In each case results for fc near 4% (triangles) and 8% (squares) are collapsed by plotting fcC̃(q)/(1− fc)C̃(0).
Curves for H = 0.5 and 0.8 are offset vertically downward by successive factors of ten to prevent overlap. Straight lines are fits
with µ = 1 + H. In all cases λl = 2048a and λs = a.
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At small q the stress and contact ACF follow the same scaling. Straight lines show that the data are consistent
with µc = µσ = 1 + H in this regime. This ansatz for the scaling exponent was motivated by the fact that µ is
bigger than the value 2H predicted for full contact by an amount that decreases with increasing H (see below). It
also ensures that µ remains below 2 as H increases to unity, and thus that the real space correlation function has
nonsingular scaling behavior. If both stress and contact ACF are assumed to have the same exponent in numerical
fits to the data, then the deviation from 1 + H is less than 0.1 (Table I). However, the fact that C̃c always decays
by about an extra factor of two means that separate fits always give µc > µσ. Given that our scaling range is only
a decade and a half, the magnitude of this difference is of order log10(2)/1.5 ≈ 0.2. We cannot rule out deviations
between µσ and µc on this scale and it represents the major source of uncertainty in Table I. Given this uncertainty,
it is possible that µc may reach or exceed 2 before H reaches unity. As for overlap models, this would imply singular
contributions from large contacts, and anomalous behavior of the correlation function at large ∆r.

GFMD GW Persson

H = 0.3 µ = 1.28(7) µc = 2.6 µσ = 1.3

H = 0.5 µ = 1.52(7) µc = 3.0 µσ = 1.5

H = 0.8 µ = 1.86(12) µc = 3.6 µσ = 1.8

TABLE I: Summary of the exponents found for the stress/contact ACFs at small fc for different roughness exponents H and the
different methods analyzed in this work. Results for GW and Persson22 are analytic predictions. GFMD results are numerical
fits assuming µσ = µc and the numbers in parentheses are uncertainties in the last significant digit.

D. Comparison to Persson theory

When comparing the GFMD results to Persson’s theory, it is more convenient to compare the stress ACFs rather
than the contact ACFs. Figures 6 and 7 show our numerical results for C̃σ(q)) normalized by the stress ACF from the
full contact approximation (f(q) = 1 in Eq. 7). Results are shown for a wide range of loads that give relative contact
area fc between 2% and 96%. Note that theory and simulation should not be compared for q > qs where C(q) → 0
and the plotted ratio is not well defined.

FIG. 6: (Color online) The stress ACF, C̃σ(q), normalized by the stress ACF for full contact as a function of q/ql for different
relative contact areas Ac/A0 and roughness exponent H = 0.3. Results were averaged over the direction of q and over small
bins in the magnitude to reduce numerical scatter. From Eq. 7 this ratio should be f(q), the relative contact area at a given
magnification q/ql. Dashed lines show a numerical evaluation of this quantity for the same surfaces.

Our numerical results for fc > 0.9 are nearly indistinguishable from the full contact expression. As fc decreases,
the discrepancies from full contact increase. The magnitude of C̃σ(q) is depressed and the data drop with an apparent
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power law indicating that µ > 2H. The deviation is clearly smaller for H = 0.8 than H = 0.3, but is present in both
cases.

In Persson’s theory with corrections for partial contact (Eq. 7) the ratio plotted in Figs. 6 and 7 should equal f(q),
the relative contact area for surfaces resolved to q 5,22. Dashed lines in the figures plot the numerically determined
f(q) for the same surfaces. For smaller relative contact area, the theory still captures the trend correctly, i.e., the
power laws with which the ACFs decay at large q are very similar to the numerical data. The theoretical prefactors are
generally better for large H than for small H, which is consistent with the observation that the value for κ predicted
by Persson improves with increasing H8.

FIG. 7: (Color online.) Same as previous figure, except that now the roughness exponent is H = 0.8 instead of H = 0.3.
Note that all configurations were produced with the same random seed, which explains the correlation in the noise for different
Ac/A0.

For a few of the largest area fractions (not included here to make the figures clear), there appears to be a crossover
at a wave vector q∗. For q < q∗ the results converge to the full contact prediction, while for q > q∗ the results follow
the larger exponent observed at small area fractions. It is intriguing to note that the crossover behavior is observed
in the simulations only near and above the percolation probability for a square lattice fc ≈ 0.5924. This suggests that
when the contacting area percolates, the system behaves as if it were in full contact at large scales. The wavelength
corresponding to q∗ might then correspond to the size of the largest non-contacting regions, leading to an increase in
q∗ as the area fraction increases. Tests of these conjectures are beyond the scope of this work.

E. Comparison to field-theoretical approach

In reference13, it was argued by one of us (MHM) that Persson’s theory corresponds to the leading-order term
of a rigorous field-theoretical expansion. The expansion is formally based on the assumption that a (free) energy
functional exists describing the interaction between two contacting solids, which depends on the gap separating the
two solids.

For exponential repulsion, corrections to Persson’s theory were worked out explicitly up to harmonic order. The
main result relevant for the calculation of the correlation function is that equation (7), which is valid in Persson’s
theory, will be replaced with

〈σ̃∗(q)σ̃(q)〉 =
{

G̃1(q)
}2 E′2

4
q2〈h̃∗(q)h̃(q)〉. (20)

Here, G̃1(q) = 1/(1 + ζqE′/2σ0) is a correction factor that depends on the characteristic screening length ζ of the
exponential repulsion, the magnitude q of the wavevector, the effective elastic constant E ′ and the macroscopic normal
stress σ0. As the normal force is never exactly zero, we have used f(q) = 1 for all values of q in the evaluation of
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Eq. (7). Thus, like Persson theory, the field theory has no adjustable coefficient. In the limit ζ → 0, corrections
disappear.

In figure 8 comparison is made between numerical results and the field theory. The numerical data was based on
the same calculations as those presented in reference13. It can be seen that corrections to Persson theory are very
small for the smallest value of the screening length analyzed here, i.e., for ζ = 0.01. However, for a value of ζ = 0.25
the agreement between predicted and calculated stress ACF is essentially perfect for the relevant wave vectors. The
degree of agreement is surprisingly good, given the relatively poor agreement in the stress histograms for that same
value, see figure 1 in reference13. At the largest value of ζ, that is, ζ = 1, there is almost perfect agreement, as to be
expected for a rigorous expansion that is most accurate for large values of ζ.

FIG. 8: (Color online) Calculation of stress ACFs for exponentially repulsive walls. Symbols indicate simulation data for
different values of the screening length ζ as measured in the units of the distance a between two discretization points. The
dashed line reflects Persson’s theory. Solid lines are drawn according to the field-theoretical approach presented in reference13.
Neither theory has adjustable coefficients. Here λl = 1024a, λs = 32a, H = 0.3, and L/A0 = 0.004.

F. Analysis of connected contact patches

A merit of GW and related theories is that they provide an intuitive explanation for why total load L and true
area of contact Ac are proportional to one another at small loads and thus that σc is constant. Although the relation

between area ac and local load lc for any individual contact is non-linear in these theories, ac ∝ l
2/3
c , the number of

contacts of each area rises linearly with load. As the total load increases, a contact that already exists will have an
increased local load and grow in size. However, new contacts will form under increasing L so that there is a supply of
new contact patches with small local loads. Under certain favorable conditions, the distribution of contact loads and
sizes maintains the same shape and σc = L/Ac remains constant. Previous work shows that while the distribution
of contact areas is different than the GW prediction, it is independent of load at small loads8. Here we examine the
relation between load and area within these patches.

In figure 9 we present data for a number of systems with H = 0.3. In particular we analyze the load lc that connected
contact patches carry as a function of their area ac. It can be seen that the data decomposes into two scaling regimes.

At small ac, the data follow the prediction of Hertzian contact mechanics that is used in GW, ac ∝ l
2/3
c . At large

ac, the load exhibits the linear scaling with area that is found for the entire macroscopic contact area. The crossover
occurs when the contact area is comparable to the square of the small wavelength cutoff in the fractal scaling. At
smaller scales single asperities are fully resolved, while at larger scales one sees the effects of roughness with many
wavelengths. GW theory does not include the effect of these larger scales and it is interesting that the linear scaling of
area and load enters so close to λs. Hyun and Robbins have shown that there is also a crossover in the the probability
of finding clusters of a given size at ac ∼ λ2

s . The probability is nearly flat for ac < λ2
c and falls off as a power law at

larger ac .
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FIG. 9: Load lc that an individual connected contact patch carries as a function of its microscopic surface area ac. Here
H = 0.3, λl = 64λs = 4096a and the area fraction is indicated in the figure.

IV. DISCUSSION AND CONCLUSIONS

In this work, we computed the stress and contact ACFs that one obtains when pressing an elastically deformable solid
against a rough, rigid, non-adhesive, and impenetrable substrate. Analytic arguments were presented for approximate
bounds and exact sum rules on the stress and contact ACFs. These imply that C̃σ decays more rapidly with wavevector
q than C̃c, but that the change in their ratio is only about a factor of two, no matter how large the system. As a
result, the decrease of these ACFs with wavevector must be described by the same scaling exponent µ.

Numerical results for µ were compared to the predictions of analytic theories for roughness exponents 0.3 ≤ H ≤ 0.8
that span the typical range for experimental surfaces (Table I). Our GFMD results are consistent with µ = 1+H within
an error of 0.1. This is only half the value predicted by the bearing area and GW models, which neglect the elastic
interactions between deforming asperities. Persson’s theory includes these correlations through an approximation
for the stress ACF that becomes exact in the limit of full contact. Recent extensions of his model5,22 that include
corrections for partial contact lead to a scaling exponent that is consistent with our numerical data22. The prefactor
predicted by this model appears to be slightly too high at small H, but to approach the numerical results as H → 1.
This is also the limit where the assumption of full contact is most accurate. In this context it is interesting to note
that the value of κ (Eq. 1) also seemed to approach Persson’s prediction as H → 1 in earlier work8.

In this work we also tested whether a recently suggested field-theoretical approach to contact mechanics allows one
to improve predictions for the stress ACFs13. The new approach can be interpreted as an expansion, in which the
perturbation parameter is a screening length which describes the exponential repulsion between two surfaces. A zero
screening length corresponds to hard wall interactions. In this limit the leading order term of the expansion reduces
to Persson’s theory. Our numerical results suggest that including the next non-vanishing term vastly improves the
agreement between calculated and predicted stress ACFs.

Lastly, analysis of the load that is carried by connected contact patches revealed a crossover at a critical patch size.
Smaller contacts exhibit a Hertzian relation between area and load. Larger contacts exhibit a linear relation between
area and load. This linearity at the contact scale may be part of the reason that a linear relation between area and
load is observed for the entire surface.
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