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Sufficiently thin elastic sheets wrinkle when they are in contact with a small adhesive counterbody.
Despite significant progress on the dynamics of wrinkle formation and morphology, little is known
about how wrinkles impede the relative sliding motion of the counterbody. Using molecular dynamics
we demonstrate that instabilities are likely to occur during sliding when the wrinkle pattern has
asymmetries not present in the counterbody. The instabilities then cause Coulomb’s friction law.
The behavior can be rationalized in terms of simple models for multistable elastic manifolds.

Thin elastic sheets wrinkle, similar to the way rods
buckle, whenever a compressive stress acting on them ex-
ceeds a critical value.1–4 Wrinkles occur in sheets whose
thickness is much smaller than their in-plane dimensions,
be it in a system as large as a tectonic plate or in a
few nanometer thick, crosslinked elastomer resting on a
soft foundation. The origin of the wrinkle inducing stress
does not necessarily have to be mechanical (pinched skin)
but can also be chemical in nature (aging skin). Wrin-
kling plays an increasingly important role in a variety
of technologies, for instance, in the search for new ways
to pattern surfaces for optical5 and electronic applica-
tions4,6 as well as for material characterization.3,4 Recent
work was particularly focused on the dynamics of wrin-
kle formation7–9 and the control of wrinkle patterns.10–12

Nevertheless, little is known about the dynamic response
of wrinkles to time-dependent stresses.

In their classical paper on the origin of wrinkles in
biological systems, Harris et al.

13 argued that traction
forces between tissue cells and thin sheets of chemically
inert silicone rubber cause wrinkles in the rubber and not
the other way around. Their experiments dismissed the
previously-held believe that the formation of wrinkles re-
quire protein networks to be become dehydrated. Today,
it is well established that neither dehydration nor strong
local adhesions are needed for wrinkles to occur in thin
elastic sheets, as evidenced most clearly by wrinkle that
water drops induce in thin, freely floating elastomeric
films.14 Likewise, the presence of friction - as observed
for the much investigated keratocytes on silicon rubber15

- may not require local adhesions either.

Wrinkle-related friction studies avoiding local adhe-
sions have so far been performed on soft elastomers,
which had been molded such that their shapes resembled
those of originally flat, unmolded elastomers wrinkling
in response to a static compression.16 These experiments
produced the insight that the structured surfaces had
lower friction than unstructured ones. Yet, they do not
answer the question if externally-driven wrinkles will re-
sult in hysteretic wrinkle dynamics, when wrinkles are
not frozen in. Hysteresis, however, entails the loss of
energy - or friction, Depending on the nature of the in-
stabilities creating the hysteresis, a different rate or ve-
locity dependence of friction can be found.17 Any quasi-
discontinuous dynamics should induce Coulomb’s law of

friction, i.e., a weak velocity dependence.

In this Letter, we will mainly be concerned with the
question if the velocity dependence of friction changes
qualitatively at the point where the thickness of the
manifold becomes sufficiently small so that the adhesive
counter body induces wrinkles. For this purpose, we will
use molecular dynamics, which has been established to
reproduce both experiments and scaling hypotheses on
the buckling and crumpling of membranes.18

Our model consists of a particle adsorbed on a square,
elastic manifold, which is is composed of discrete grid
points (“atoms”) that are connected with elastic springs.
The adsorbed particle has the quasi-spherical topology
of a C60 molecule, unless mentioned otherwise. All units
in this paper are expressed in terms of the mass of a
manifold atom, the stiffness of springs connecting two
in-plane adjacent manifold atoms, and the equilibrium
spacing between them. The effective thickness t of the
membrane is controlled by multiplying the stiffness of
springs that do not lie completely within the xy-plane
with a scaling factor t. Simulations are conducted with a
self-written molecular dynamics code. More details can
be found in the auxiliary material.

We would first like to demonstrate that our model pro-
duces the proper response of the manifold to an adhesive
counter body as a function of its thickness, see Fig. 1. At
large thickness, grooves occur. They are elastic deforma-
tions in response to the periodic boundary conditions and
thus exhibit the four-fold symmetry of a square. As these
grooves can be interpreted as simple field lines connect-
ing adjacent adsorbed particles, we classify this regime
as unwrinkled. Around t = 1 “real” wrinkles start oc-
curring, i.e., patterns that deviate from trivial symmetry.
When the manifold becomes thinner, the number of wrin-
kles increases and their depth decreases, conforming to
the known properties of wrinkles4. In addition, wrinkles
are starting to be no longer symmetrically equivalent for
thicknesses well below unity, e.g. Fig. 1(c). The movie
wrinkling3.mpg presented in the auxiliary electronic ma-
terial shows the deposition of a particle onto the substrate
and the subsequent wrinkle formation dynamics.

Configurations obtained during sliding differ from
those where no external forces act on the adsorbed par-
ticle. This claim is substantiated in Fig. 1(d) depicting
the system in which an adsorbed particle had been slid
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FIG. 1: (Color online.) Top view on the elastic manifold for
various thicknesses t: (a) 100, (b) 1, (c) 0.1 (d) and (e) 0.01,
and (f) 10−3. In all graphs, patterns are shown after the
particle is deposited, except in figure (d), where the adsorbed
particle has been slid by a few lattice constants to the right
with a velocity of 0.256× 10−3 in reduced units.

by a few lattice constants. This configuration lacks the
inversion symmetry about the plane normal to the sliding
direction. Non-sliding systems always assume inversion
symmetry after thermal averaging. The way in which
symmetry is broken in Fig. 1d resembles that of kerato-
cytes moving on highly compliant silicon rubber, see for
example Fig. 6a in Ref. [15]. Specifically, more wrinkles
are found behind the moving particle than in front of it.

As is the case for any finite adsorbed (stable) parti-
cle, there exists a well-defined linear response of the drag
velocity v to an external driving force F in the limit of
small F , i.e., v = F/(mγ), where m is the mass of the
adsorbed particle and γ is the drag coefficient or the in-
verse slip time.19 A question that we are interested in is
whether there is a change in γ as wrinkles start to form.
As discussed in more detailed in the auxiliary material,
drag coefficients can be determined in thermal equilib-
rium either through measurements of the particle’s ther-
mal diffusion constant, or alternatively, by acquiring and
integrating over the time autocorrelation function of the
force (FACF), 〈Fx(τ)Fx(0)〉, where Fx(τ) is the force at
time τ acting between manifold and particle. In Fig. 2

we report our results for the drag coefficient.
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FIG. 2: Drag coefficient γ of the adsorbed particle as deter-
mined by (a) integration of the force autocorrelation func-
tion (circles) and (b) measurement of the diffusion constant
(stars). For t < 2 only upper bounds in the diffusion con-
stants and thus lower bounds for γ could be determined. The
latter lie outside of the shown domain, as indicated by the
arrow.

In the unwrinkled regime, the FACF and diffusion con-
stant based methods both produce similar estimates for
γ. This no longer holds for thicknesses t < 1, where wrin-
kles occur in addition to those connecting an adsorbed
particle with its closest images. There the employed 107

time steps no longer suffice to measure meaningful dif-
fusion constants. The reason is that the adsorbed par-
ticle, which is kept at a thermal energy of T = 10−4,
is pinned - or at best sub-diffusive - within the given
time window. From such simulations, only upper bounds
for the diffusion constant can be obtained. The result-
ing lower bounds for γ still exceed the domain chosen
for Fig. 2. Since the particles appear pinned at t < 1,
the values of γ as obtained by the FACF can be inter-
preted as an (instantaneous) damping that the adsorbed
particle experiences while the system is arrested in one
basin of the potential energy surface. This instantaneous
damping shows a second quasi-continuous change near a
critical value of t ≈ 0.4 and keeps increasing as the thick-
ness decreases. This second transition coincides with
another qualitative morphological change during which
wrinkles become symmetrically distinct, i.e., their widths
and lengths no longer take essentially unique values for
a given system.

The observed pinning of an adsorbed particle at small
thicknesses may appear counterintuitive if one considers
the elastic manifold to be continuous. However, the dis-
creteness of the manifold breaks its perfect translational
invariance, thereby allowing (quasi-static) shear forces
to be exerted. A similar phenomenon is known from the
spreading of liquid droplets on surfaces, where hetero-
geneities can pin contact lines and induce contact angle
hysteresis. This is why rain drops do not necessarily run
down a seemingly flat, inclined glass surface.20
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Pinning implies static friction and in most cases also
Coulomb friction once sliding has been initiated. In our
analysis, we focused on kinetic friction, because static
friction (that is the first stiction peak) turned out to
be undesirably sensitive to the initial conditions. Con-
versely, kinetic friction had substantially less history de-
pendence once the particles had been slid a few lattice
constants. We calculated kinetic friction as a function of
sliding velocity for two thicknesses (t = 10−3 and t = 10),
see inset of Fig. 3, and as a function of thickness for a
fixed relative center of mass velocity of v = 0.256 · 10−3,
see main part of Fig. 3. In all these simulations, we re-
duced the temperature by a factor of ten as compared
to the simulations in thermal equilibrium, so that even
those instabilities could be captured that only involved
small energies.
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FIG. 3: (Color online.) Main figure: Kinetic friction obtained
at T = 10−5 for different thicknesses. Inset: Kinetic friction
as a function of the sliding velocity v for two different thick-
nesses: t = 10−3 (wrinkled regime) and t = 10 (unwrinkled).
Lines are linear fits to the data.

The extremely weak velocity dependence of kinetic fric-
tion for the thin substrate is indicative of Coulomb fric-
tion and thus consistent with the observation that an
undriven particle was pinned. The large difference in ki-
netic friction, almost three orders of magnitude, between
the t = 10−3 and the t = 10 thick elastic manifolds im-
plies that the kinetic friction with the thinner manifold
cannot simply be related to local adhesions. The small
but seemingly finite friction in the limit of small veloc-
ities for the thick sheet is due to local instabilities that
do not significantly affect the wrinkle morphology. The
linear response regime could not be reached in the calcu-
lations shown in Fig. 3, because very small temperatures
had been chosen in these runs.

The non-equilibrium simulations also show three thick-
ness regimes that roughly coincide with those obtained
in the thermal-noise calculations. Dissipation is again
largest for the thinnest manifolds, this time by orders of
magnitude. However, the intermediate regime shows less
kinetic friction than the large thickness regime, which dif-
fers from the trends in the calculations without external

driving. The reason for the different behaviors lies in the
different morphologies that the adsorbed C60 shaped par-
ticle can induce in the substrate. Specifically, the wrin-
kles in the large t regime had always four-fold symme-
try, while for intermediate values of t, the symmetry was
eight-fold in the thermal-noise simulation, which quickly
converted to three-fold symmetry once sliding had begun.
Preliminary runs of particles with different shapes, i.e.,
one monomer with large Lennard Jones radius, and one
flat heptagon, have not shown any sign of an intermediate
regimes.

The arguably most interesting effect in Fig. 3 is the in-
crease in the friction force by a factor of more than 100 as
the thickness is decreased from t = 0.7 to t = 0.5. To elu-
cidate the origin of this behavior, lateral forces are shown
as a function of slid distance ∆x in Fig. 4(a). The lat-
eral force of the thicker substrate has various instances in
time, for example at a slid distance of ∆x ≈ 5.75, where
it changes rather quickly with ∆x. Yet, once steady state
has been reached (after going through one single “stic-
tion peak” at the early stages of sliding after deposition
- not shown here) the lateral force apparently evolves
rather smoothly in time for t = 0.7. This is why dis-
sipation is small. Conversely, the slightly thinner sheet
produces a distinct saw-tooth time dependence, which is
indicative of instabilities or stick-slip type motion within
the system leading to large dissipation. For even thinner
substrates, this stick slip motion becomes erratic and is
no longer periodic with the manifold lattice (see also the
movie sliding.mpg on stick slip motion in the auxiliary
electronic material).
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FIG. 4: (Color online.) (a) Instantaneous force Fx as a func-
tion of the slid distance ∆x for two different thicknesses. Ar-
rows mark points where the thicker substrate is close to show-
ing slips. (b) Height of the manifold at a distance twice the
diameter of the adsorbed particle for the same thicknesses.

The discontinuous increase in friction when the mani-
fold thickness decreases from t = 0.7 to t = 0.5 coincides
with a morphological change of the manifold. The t = 0.7
has three highly symmetric wrinkles, shown in Fig. 4(b),
while the slightly thinner sheet has one more wrinkle and
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probably more important, wrinkles now are inequivalent.
This asymmetry of the pattern is not an immediate con-
sequence of the shape of the adsorbed body. We made
the same observations in the two sets of test runs in which
either a large Lennard Jones monomer or a flat heptagon
had been used as adsorbed particles. The asymmetry
of the wrinkle pattern is significant because it implies
that there are several mechanically (meta)stable configu-
rations that cannot be reached from one another without
changing the energy of the system. For example, making
the t = 0.5 wrinkles at ϕ ≈ 160◦ and 340◦ as deep as
those at ϕ ≈ 70◦ and 250◦ and vice versa will require the
system to pass over an energy barrier.

The multistability of discrete, elastic systems has long
been recognized as a possible origin of energy-dissipating
instabilities leading to Coulomb’s friction law:21,22 Once
a configuration becomes unstable, the degrees of freedom
quickly advance to the vicinity of another energy mini-
mum. Multistability however do not arise automatically
in discrete elastic systems. Whether instabilities occur

can depend on details such as the ratio of atomic spac-
ings in adsorbed layer and substrate as well as on other
details of the interaction. These and related insights have
been best formalized in the context of the Frenkel Kon-
torova model.23

It is certainly not surprising that thinner sheets ex-
hibit a higher propensity for instabilities to occur than
thick sheets due to their higher compliance. Other stud-
ies show the same trends, be it layers of graphite lubricat-
ing nano-scale objects24, the buckling hysteresis in multi-
walled carbon nanotubes under cyclic compression25, the
snap transitions in adhesion between a shell and a sub-
strate (which do not require asymmetry in the wrinkle
pattern!),26 or scaling theories of friction of elastic man-
ifolds as a function of their physical dimension.27 In this
sense there is no new wrinkle in the theory of friction on
a fundamental level but a matured understanding of the
mechanisms that can lead to it.
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