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Abstract. Crystalline structures of elemental solids can be rationalized in terms of the competition between

ions and electrons: Ions try to increase local symmetry and thus packing fraction, while electrons want to

reduce it. If the latter win, layered structures, network, or molecular solids form and the opening of an elec-

tronic gap is favoured. In this work, it will be discussed how this competition can affect the thermodynamic

behavior of phase change materials (PCMs), in particular that of Ge-Sb-Te alloys: Their technologically

relevant metastable crystalline structures can be derived from (hypothetical, metallic) simple cubic crystals

near half-filling via a symmetry breaking, such as a Peierls distortion in Sb-rich PCMs or ordering of chem-

ical species onto sublattices on the GeTe-Sb2Te3 pseudo-binary line, leading to the formation of σ-bonded

networks. Local symmetry and density become even smaller and the gap opens up even more in the glass,

for example, when the group IV element germanium undergoes a coordination change from (distorted)

octahedral in the crystal to tetrahedral. This coordination change leaves the σ-bonded network intact, as

will be demonstrated by analysis of first-principle simulations. Based on local symmetry arguments, simple

rules for the number of electron holes and/or vacancies in metastable crystalline structure of PCMs can

be derived and the response of Ge-Sb-Te alloys to pressure be predicted: Crystalline alloys will amorphise

under pressure when there are more Te than Ge atoms and increase their conductivity. Conversely, disor-

dered alloys will crystallize if the number of Ge atoms exceeds that of Te. The possibility to switch the

latter PCMs reversibly with pressure will be discussed. Lastly, unusual relaxation dynamics of PCMs are

identified from first-principle calculations: When a solid is streched to its amorphisation point, the ionic

energy (which is minimized in the crystal) increases with time as opposed to the dominating electronic

energy. At the same time, coordination statistics become increasingly distinct with age from those in the

crystal, i.e., the quenched fluid initially relaxes away from the crystalline phase.

PACS. 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling – 61.72.jd

Vacancies – 64.60.Cn Order-disorder transformations
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1 Introduction

Rewritable optical media such as DVD-RW rely on the

strong contrast of the optical properties that phase change

materials (PCMs) exhibit between their ordered (metal-

lic or more precise semi-metallic) and disordered (insulat-

ing or more precise semi-conducting) phase, representing

0 and 1 bits respectively [1]. Owing to many beneficial

properties, e.g., fast switching [2] and low costs, PCMs

are promising candidates for improved non-volatile mem-

ory cells [3], for which they have already been success-

fully tested [4], and for other applications such as pro-

grammable switches. The enormous economic relevance

of memory cells, the slowing down of flash memory scal-

ing, and the promise that the switching behavior of PCMs

bears in this context has spurred an increased research ac-

tivity on PCMs in the past few years [3] with an emphasis

on unraveling the microscopic origin of their phase change

properties [5–8].

The contrast in optical and electronic properties of

PCMs between the crystalline and glassy phases is typ-

ically not observed in other materials [9]. Regular metal-

lic glasses conduct electricity similarly well as their crys-

talline counterparts, and the band gap in disordered semi-

conductors, such as doped silicon, is similar but typically

smaller than that of chemically identical systems with

long-range order [10]. Therefore, it has long been a mys-

tery why these generally observed trends do not apply to

PCMs. Before recent answers to this mystery will be sum-

a The author thanks Razvan Nistor for valuable guidance on

Quantum Espresso, Abinit and useful discussions.

marized, it may be beneficial to comment on the chemi-

cal composition of PCMs and their electronic structure in

some crystalline phases.

Most commercially used PCMs are based on either

ternary compounds made of Ge, Sb, and Te, [11] or qua-

ternary alloys containing predominantly Ag, In, Sb, and

Te. [12] Thus, the predominant constituents of PCMs are -

not surprisingly - elements which form either semiconduct-

ing or semimetallic solids at ambient conditions. In high-

symmetry (high-temperature) crystalline phases, the local

order in typical representatives of the ternary and quater-

nary alloys, specifically Ge2Sb2Te5 and Ag5In6Sb59Te30,

have been found to be very similar to one another. [13] It is

thus tempting to assume that similar mechanisms are re-

sponsible for the PCM behavior in both families and that

it may suffice to focus on one of the two when rationalizing

their properties on a fundamental level.

Here, we will be concerned with the simpler and better-

studied ternary alloys. Their ambient temperature and

pressure phases can be derived from a simple cubic ref-

erence crystal with random occupation of atoms on given

lattice sites. This makes the discussion of their band struc-

ture particularly simple. As argued in more detail in the

main text, commercially used PCMs are at or near half

filling in their (hypothetical) simple cubic (s.c.) reference

structure. From there, they can reduce their energy effi-

ciently through a symmetry reduction, either by Peierls

distorting (see, e.g., elemental Sb [14]) or by ordering the

chemical species onto sublattices. The latter happens, e.g.,

for Ge2Sb2Te5, where Te atoms reside on one sublattice
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of the rock salt structure, while Ge and Sb as well as va-

cancies occupy the other sublattice. [15] Irrespective of

the details in which the crystal symmetry is reduced, a

gap in the electronic band structure starts to open. While

this short discussion may make plausible why crystalline

PCMs are poor conductors or small band-gap semiconduc-

tors at ambient conditions, it does not yet explain why the

band gap opens up substantially more when they disorder.

The first plausible explanation as to why PCMs are

special was given by Kolobov et al. in 2005 [5]: Unlike most

materials, which have similar local order in the glassy and

the crystalline phase, they found that the coordination

of Ge atoms is tetrahedron like in the disordered phase

of PCMs, while its local coordination in the crystalline

phase is octahedral. The transition from one local coordi-

nation to the other was called the umbrella flip. Due to

the umbrella flip, the number of neighbors that germa-

nium has in the glass matches the number of its valence

electrons (as is the case, e.g., for C in insulating diamond),

whereas in the crystal, those numbers differ (as for C in

conducting graphite). While counting the number of elec-

trons of a single atom in an alloy is insufficient to ascer-

tain its conductivity, it may yet provide some intuitive

guideline. A more rigorous quantitative analysis certainly

requires a full band structure calculation, as done, by Wel-

nic et al.: [6] They set up a crystalline (spinel) structure

mimicking the suggested local order of ternary PCMs and

found that the coordination change on Ge induces the an-

ticipated dramatic band gap increase. Thus, Welnic et al.

have shown that a change in local structure as anticipated

by Kolobov [5] can indeed increase or open the electronic

gap and renders a semimetal into a semiconductor.

Despite its appealing simplicity, the umbrella flip mo-

del cannot explain PCM behavior at large: Various al-

loys consisting of group V and group VI elements, such

as Sb2Te3−xSex [16] and SbxSe100−x [17,18] show typi-

cal phase change behavior. Yet no group IV element is

present, which would be required for the umbrella flip.

This calls for an alternative or more generally formulated

explanation of PCM behavior.

Recent theoretical approaches to PCM behavior [19–

21] are based on the concept of resonant bonding which

was adopted for solids by Lucovsky and White [22]: They

suggested that the stark contrast in the dielectric con-

stant of some semiconductors between their crystalline

and amorphous phase, in particular that of IV-VI bina-

ries or group-VI elemental solids, is due to the presence

of resonance bonding in crystals and its absence in glasses

lacking long-range order. Wuttig et al. [19–21] extended

these ideas to PCMs and demonstrated that the dielectric

constant of ordered PCMs distinctly exceeds that of disor-

dered PCMs, even after the contribution of the conducting

electrons had been subtracted off.

In the present context, it may be interesting to note

that not only the dielectric properties but also mechani-

cal transport properties can differ between crystalline and

amorphous phase change - or related - materials: Quasi-

circular Sb nano-particles (which tend to be amorphous

- as opposed to the distinctly non-circular crystalline Sb

nanoparticles [23]) glide essentially frictionless on graphite
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surfaces in ultra high vacuum while crystalline particles

show much enhanced static friction [24]. The latter, how-

ever, should pin less easily than their amorphous counter-

parts provided that local order and chemistry are simi-

lar [25]. This implies that the local order must sometimes

differ between amorphous and crystalline in small band

gap semi-conductors/metals - even when group-IV ele-

ments are absent.

A striking difference between the umbrella flip and the

resonance bonding model are the specific features of the

changes in the structural motifs between crystal and glass.

However different the details of the mechanism behind

the resonance bonding and the umbrella flip models may

seem at first sight, one could argue that there is a uni-

fying scheme behind both: Each time the crystal appears

to have larger local symmetry than the glass. For exam-

ple, resonance bonding can reduce a (predominantly) bi-

modal distribution of bond lengths to a unimodal one, be

it, for instance, in the famous case of benzol or the ex-

ample given for resonance bonding in figure 5 of Ref. [19].

Unfortunately, no specific local structural motifs for dis-

ordered group-IV-free PCMs have been suggested, which

is one of the reasons why the focus in this work has been

laid on Ge-containing PCMs.

In this paper, it will be demonstrated that the um-

brella flip is a particular case of the well-known competi-

tion between ions and electrons [26–28]: Ions attempt to

increase symmetry and thereby packing fractions, while

electrons try to reduce symmetry and thus implicitly at-

tempt to reduce packing fractions (potentially resulting

in the formation of networks or even molecular solids) by

opening up an electronic gap. Here, it will be shown in

detail how this ion-electron competition drives the struc-

tural relaxation in both crystalline and glassy PCMs via

the coordination change of group IV elements.

The reason why the competition between ions and elec-

trons is particularly fierce when alloys consist of elements

near tellurium and antimony is that these two elements

are positioned in the periodic table of the elements (PTE),

where (elemental) solids turn from being metallic to being

insulators as one goes from the left to the right or the top

to the bottom in the PTE. In addition, elements that are

located near antimony in the PTE have flexible valency,

e.g., the coordination of Sb changes easily between 3 and

5 involving an altered hybridization. The competition be-

tween ions and electrons can be visualized particularly

easily when group IV elements are present, such as Ge,

which can be either sp2-hybridized when 3-coordinated or

sp3-hybridized when tetrahedrally coordinated.

This paper is organized as follows: The way in which

symmetry reduction and pressure affect electronic gaps in

crystalline materials will be sketched in section 2, mostly

in terms of the tight binding model. In sections 3 and 4

numerical data on ordered and disordered PCMs will be

presented, respectively. For the latter, unusual relaxation

dynamics will be revealed. How pressure affects atomic

and electronic structure of PCMs will be investigated in

section 5 and it will be predicted which initially crystalline

Ge-Sb-Te PCMs disorder upon densification and which

ones order from an initially glassy state.
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2 Elementary approach to the electronic

structure in crystalline PCMs

In this section, the interplay of atomic and electronic struc-

ture in PCMs will be reviewed, in particular those that

consist predominantly of Ge, Sb, and Te atoms. We feel

that the recent theoretical discussion of PCMs has been

largely concerned with providing a lot of quantum me-

chanical detail, but that many elementary, albeit instruc-

tive and thus useful considerations regarding PCMs have

either not been made or been forgotten. In the sense of

Eugene Wigner’s famous quote, “it is nice to know that

the computer understands the problem. But I would like to

understand it too”, we want to provide a qualitative dis-

cussion at a much more elementary level than in Ref. [29],

and support our arguments, which due to their simplicity

are not always new, with simple, analytical calculations

of one-dimensional model systems as well as with realistic

ab-initio calculations. Overall, this work, in particular this

section, is meant to foster an intuitive understanding for

the investigated materials.

Rationalizing the atomic structure of solids from el-

ementary principles, requires one to consider (i) atomic

packing fractions, (ii) the octet or related rules, and (iii)

electrostatic effects. The latter will be moderate in Ge-Sb-

Te based alloys, because all three elements have similar

electronegativity. Light atoms, such as silicon or germa-

nium, tend to be a minority species in PCMs. For heavier

atoms, it is important to realize that the degeneracy of

the outer s and p electrons is increasingly lifted, i.e., one

may consider the 5s electrons of Te and Sb to be core

electrons that do not (significantly) contribute to chemi-

cal bonding and electronic conductance. One could thus

argue that as far as the element Sb is concerned, one may

rather be dealing with a sextet rule, Z = 6 − Np, than

with an octet rule, Z = 8−Nsp. [30] Here Z is the num-

ber of (covalently) bonded neighbors while Nsp and Np are

the number of sp or p valence electrons respectively. Once

the sextet rule is satisfied, those structures will have rel-

atively large stability that have a high packing fraction,

i.e., it will be beneficial to order the larger atoms on a

closed-packed lattice and the smaller ones will occupy the

sites with large volumes.

For many Ge-Sb-Te compositions, in particular those

in which Te is the majority species, Te atoms occupy one

sublattice of the simple cubic lattice (say the Cl positions

of the NaCl structure), while Ge, Sb, and potentially va-

cancies occupy the other [15,31]. This ordering can be ra-

tionalized within quite simple geometric and electrostatic

arguments. First note that the electron affinity of Te is

1.97 eV while those of Sb (1.05 eV) and Ge (1.25 eV)

are noticeably smaller. As a consequence, Te will be neg-

atively charged and thus its size be enhanced, while Sb

and Ge will be positively charged and therefore have a re-

duced ionic radius. Like charges (as well as large spheres)

will try to keep as far away from one another as possible,

which - at fixed density - they can achieve by adopting a

closed packed structure, e.g., face center cubic. Small ions

can then occupy interstitial positions, in this case the Na

sublattice in the rocksalt structure.
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2.1 One-dimensional tight-binding model

Due to its importance in the present context, the effect

that symmetry reduction has on the energy balance of

non-interacting electrons will be reviewed. In addition to

considering the effect of displacements, which are dealt

with in standard text books [26,27], we will include the

effect that chemical ordering has on the band structure in

a mean-field approximation. The latter analysis shows in

simple terms how ordering of atoms onto sublattices, as

it happens for instance in the NaCl structure, can turn a

metal into an insulator. This is easily done in the frame-

work of the tight-binding approximation.

In addition to shedding insight on how symmetry re-

duction affects band structure, the following analysis will

also allow us to rationalize the response of Peierls-distorted

structures to pressure in section 2.2. A less qualitative and

more quantitative analysis of the effect that pressure has

on Peierls-distorted simple cubic structures was given by

Gaspard et al. [30].

The one-dimensional tight-binding chain has much sim-

ilarity with a one-dimensional elastic chain with near-

est neighbor coupling. Its properties are quickly recapitu-

lated here: A one-dimensional, mono-atomic linear chain

with lattice constant a only has one acoustic branch and

the wave numbers in the first Brillouin zone lie within

[−π/a, π/a[. If we change either the mass of every other

atom to another value or the spring stiffness of every other

spring, then the system will double its lattice constant.

The Brillouin zone (BZ) will only be half as large as before

and there are now two branches that have zero slope at

the boundary of the BZ. Similar effects occurs in a tight-

binding model for electrons, in which either every second

on-site energy differs (chemical ordering), or bonds have

alternating lengths (Peierls distortion), see Fig. 1.

Fig. 1. Schematic representation of the effect that a symme-

try reduction has on the dispersion, E(k), in a one-dimensional

chain and its effect on the density of states n(E). Left: Solid

(blue) and dashed (red) line represent the dispersion for a

mono-atomic and di-atomic chain, respectively. The shaded

(yellow) area is proportional to the electronic energy gained

by the symmetry reduction. Right: Density of state for the

diatomic chain.

The mean-field nearest-neighbor tight-binding Hamil-

tonian of a system with N pairs of atoms, e.g., Na atoms

and Cl atoms on a line, can be written in real space as

H =
N∑

n=1

{
α1Φ1

(
c†n1cn1 − c†n2cn2

)
+(t + α2Φ2)

(
c†n1cn2 + cn1c

†
n2

)
+(t− α2Φ2)

(
c†n2cn+1,1 + cn2c

†
n+1,1

)}
(1)

Here c†nα is a creation operator for an electron in molecule

or unit cell n. The index α enumerates the basis atom. cnα

is the corresponding annihilation operator. Φ1 is an order

parameter indicating to what extend the two molecules

have separated onto sublattices, while Φ2 is the average
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value for the Peierls distortion, or in other words, twice the

average difference between long bonds and short bonds. α1

can be associated with the (differential) electronegativity.

t is a tunneling amplitude for the electrons to hop from

one atom to its neighbors when no Peierls distortion oc-

curs. α2 indicates how quickly t changes with bond length.

In leading order, the dependence of the tunneling param-

eter on the bond length will be linear, which motivates

the linear dependence of the hopping term with the order

parameter in the mean field solution.

The Hamiltonian can be block diagonalized with the

Fourier transform. For each (integer) wave number q, one

can represent the block elements h̃(q) as a [2× 2] matrix:

h̃(q) =

 α1Φ1 (t + α2Φ2)e−2πiq/N + (t− α2Φ2)e2πiq/N

c.c. −α1Φ1

 ,

(2)

where the (2,1) element of the matrix is the complex con-

jugate (c.c) of the (1,2) element. The eigenvalues of this

matrix then are

E1,2 = ∓2
√

t2 cos2
(πq

N

)
+ α2

1Φ
2
1 + α2

2Φ
2
2 sin2

(πq

N

)
. (3)

In leading order, the gap that opens up at q = N/2 for

half filling thus is

∆ = 4
√

α2
1Φ

2
1 + α2

2Φ
2
2 (4)

and the electronic energy gained per particle at half-filling,

∆EHF becomes

∆EHF =
1

π/2

∫ π/2

q=0

dq {E1(q, Φ1, Φ2)− E1(q, 0, 0)} , (5)

= −α2
1Φ

2
1

2π
ln

α2
1Φ

2
1

43.493t2
− α2

2Φ
2
2

2π
ln

α2
2Φ

2
2

5.887t2
+ · · ·(6)

where E1 is the negative root from Eq. (3). The coefficients

in Eq. (6) were obtained numerically from the data that

is shown in Fig: 2.

Fig. 2. Gain in energy (normalized by the square of the or-

der parameter) due to ordering as a function of the order pa-

rameter. (Black) circles and (red) squares refer to half filling,

while (green) triangles up and (blue) triangles (down) stand

for quarter filling. HF and QF stand for half and quarter fill-

ing respectively. Lines represent data obtained via Eqs. (6) and

(8).

An interesting aspect of Eq. (6) is that the energy gain

is essentially quadratic in the order parameter, but that

there is a prefactor that is logarithmic in the squared or-

der parameter. This prefactor will make sure that the elec-

tronic contribution will always dominate the ionic contri-

bution at small values of Φi, because in leading order, the

ionic energy increases quadratically with the order param-

eter, i.e.,

∆Eion =
1
2

2∑
i=1

βiΦ
2
i + · · · (7)

Here, β2 can be interpreted as a spring or force constant

related to the interaction between core ions, while β1 is
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essentially the (electrostatic) energy difference between

a perfectly ordered and disordered arrangement of ions.

Note that the sign of β1 is not necessarily positive, e.g.,

when the ions have differing charge, Coulomb interactions

will be minimized when different species are placed in an

alternating fashion, so that a negative value of β1 is to

be expected. Conversely, β2 should generally be positive,

as the positive core ions repel each other with Coulomb

potentials, which have positive curvature for like charges.

Due to the fact that ∆Eion only increases quadratically

with the order parameter, the considered, one-dimensional

systems are unstable against a Peierls distortion and/or

against ordering of chemical species onto sublattices within

the tight-binding approximation. In other words, equi-

distant spacings in the linear chain are symmetry forbid-

den (zero temperature, classical ions) for half-filled sys-

tems due to the functional dependence of ∆EHF on the

order parameters, no matter how large βi. Similar com-

ments apply to the tripling of the lattice constant if the

band is filled by one third or two third, etc., but energy

reduction due to an increase of the linear size of the ele-

mentary cell is generally largest for half-filling [26]. Note,

however, that equi-distant spacings in a (periodically re-

peated) chain can be recuperated when electron correla-

tion can no longer be neglected and/or when the system

is finite as for example in the case of a benzol ring, which

adopts a resonant structure.

When the tight-binding chain is not at half-filling, the

functional dependence of ∆E on the order parameters be-

comes simply quadratic, for example, at quarter filling:

∆EQF = −0.5611α2
1Φ

2
1 − 0.11094α2

2Φ
2
2 + ... (8)

Thus, when the systems are not at half-filling, it becomes

a question of prefactors if the ions manage to establish

symmetry or if the electrons keep the upper hand and

break it. The logarithmic divergence of the prefactor in

Eq. (6) also disappears for systems with dimensionality D

greater than one, because the relative weight of the van

Hove singularity becomes smaller in higher dimensions. In

D > 1, it thus becomes again a question of prefactors if

ions or electrons prevail.

Of course, the current model analysis cannot be used

to make specific predictions on ordering in solids, e.g.,

when trying to ascertain what type of ordering onto sub-

lattices occurs in higher dimensions. For example, deter-

mining which of the 36 possibilities [32,33] will be taken

to Peierls distort away from the simple cubic lattice to

another structure is a question of the number of valence

electrons (halogens generally only form one short cova-

lent bond per atom) and materials specific parameters:

Heavy group V elements form three short bonds, while ni-

trogen with essentially degenerate s and p electrons, only

forms one short bond in its cubic Pa3 phase [34,35], which

may also be interpreted as a Peierls distorted simple cubic

structure.

At the end of this section, it may be interesting to note

that the only elemental solid with simple cubic structure

at ambient conditions is polonium [36], which does not

have a half-filled p-shell. Conversely, the elemental solids
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formed by As, Sb, or Bi, all having half-filled p-shells, are

all Peierls distorted at ambient conditions.

2.2 Effect of pressure in the tight-binding model

In this section, we will focus on the question of how pres-

sure affects the Peierls distortion, which will be much more

dramatic than the effect it has on ordering of elements

onto sublattices. The rational is that β1 cannot be ex-

pected to change signs. Thus ordering different chemical

species onto sublattices will stay beneficial at large pres-

sures.

Pressure increases the density and thus reduces bond

lengths. This will affect the numerical values for the ion-

related coefficient β2 as well as the electronic coefficients

t and α2. The latter two terms may be expected to in-

crease exponentially with decreasing bond length but to

remain finite, while α1 is an atomic property that should

not depend on pressure. Conversely, β2 is dominated by

the Coulomb potential, which diverges at small separation.

Upon densification one should thus expect β2 to increase

more rapidly in magnitude than the electronic terms and

to become dominant.

Given the relatively rapid increase of β2 with density,

the ionic term must ultimately dominate the electronic one

and consequently, the Peierls distortion will be squeezed

out. For example, the group V elements P, As, Sb, and

Bi, [37] become simple cubic under pressure. Likewise,

density-functional calculations indicate relatively high sta-

bility of simple cubic structures for elemental sulfur [38]

and tellurium [39] under pressure.

3 Electronic structure in crystalline PCMs

In this section we will analyze in more detail two impor-

tant consequences of the analysis from section 2.1: (a) The

reduction in electronic energy with increasing order pa-

rameter (be it Peierls or ordering) is largest when the sys-

tems are at half filling (in their hypothetical simple cu-

bic reference state) upon doubling their periodicity, see

Fig. 1. (b) The ordering of chemical species onto sub-

lattices opens up a gap in the electronic density of states.

For reasons of accuracy, it may be necessary to note that

the opening can be incomplete for small order parameters,

for example, in dimensions greater than one and/or in the

presence of electronic couplings beyond nearest neighbors.

3.1 Electronic structure of GeTe-VacSb2Te3 and

Sb-VacSb2Te3

What can we learn from consequence (a) mentioned in the

previous paragraph? From an electronic point of view, it

is energetically most beneficial for a simple-cubic system

to have three p valence electrons per lattice site, where

spin was implicitly allowed for. For the pair GeTe, each

atom contributes on average three electrons, but the unit

Sb2Te3 contributes three too many electrons for the sex-

tet rule. Within the simple counting scheme, the desired

balance can be reestablished if one vacancy (Vac) is intro-

duced per Sb2Te3 unit. A well-relaxed (GeTe)1−x(Sb2Te3)x

crystal should thus approximately correspond to (GeTe)1−x

(VacSb2Te3)x. It may be tempting to compare this rule

to simulation results of the formation energy of vacancies
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such as those presented in figure 2 of Ref. [40]. Such a

comparison, however, may not be unambiguous unless the

calculations are done such that only the number of vacan-

cies is varied at fixed stoicheometry of the real chemical

constituents.

In order to shed more light onto the band structure

of (GeTe)x(VacSb2Te3)1−x, let us consider a system of 58

atoms (14 Ge, 12 Sb, 32 Te) plus 6 vacancies, which were

all randomly placed onto a simple cubic lattice. In our

counting scheme, the system is at half filling as there are

18 more Te than Ge atoms, which are compensated for

by six vacancies. Without any ordering onto sublattices,

neither s-band nor p-band break up into sub-bands and

the density of states (DOS) is large near the Fermi energy,

as can be seen in Fig. 3. s- and p-bands still do not break

up when the lattice is allowed to undergo local (thermal)

distortions. However, once Te atoms are brought onto one

sublattice and Ge and Sb atoms as well as vacancies onto

the other sublattice, a deep dip occurs in the DOS close

to the Fermi energy, in agreement with the reasoning that

mainly bonding and no anti-bonding p-orbitals are occu-

pied if for each 3 Te atoms exceeding the number of Ge

atoms, one vacancy is introduced. (Remember that excited

states are not reliable in DFT, but that trends in the DOS

can be ascertained. Also, finite size effects due to disorder

will be large for systems containing only 58 atoms.)

Introducing stoichiometric vacancies via the nomen-

clature (GeTe)x(VacSb2Te3)1−x is in contradiction to a

conclusion from Matsunaga et al. [31], who argued that

the number of vacancies should be x/(1 + 2x). (We may

Fig. 3. (a) Electronic density of states n(E) as a function

of energy E for Ge2Sb2Te5 under different constraints. Long-

dashed (black) line: Different atoms and vacancies are placed

randomly onto ideal, simple cubic lattice sites. Dotted (blue)

line: Atoms are allowed to move away from ideal lattice posi-

tions. Solid (green) line: Te atoms occupy one sublattice, all

other species occupy the other sublattice. (b) Integrated den-

sity of states N(E) =
∫

n(E) dE as a function of energy E.

Vertical straight (red) lines are drawn to separate bands that

are dominated by s or p electrons, while vertical broken (red)

lines roughly separate bonding from antibonding (*) orbitals.

have misunderstood the notation in Ref. [31] though).

Differences may be subtle at small values of x, but for

x → 1 there can be a factor of up to three between the

two results. We would still like to support our rationale

with the following reasoning (and the arguments at the
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end of this section): If one considers Sb2Te3 crystals, then

it is possible to see that these structures are layers with

strong (short) bonds within one Te-Sb-Te-Sb-Te unit and

long bonds between two subsequent repeat units. [41] One

could now make the case that the vacancies have con-

densed into the layer containing the long bonds, so that

there would be one layer of vacancies for each Sb2Te3 slab.

We would like to conclude this section with a qual-

itative, graphical discussion of the number of vacancies

in Sb-rich Sb-Sb2Te3. The considered compounds try to

open the electronic gap predominantly via a Peierls dis-

tortion rather than by ordering of chemical species onto

sublattices. For the sake of simplicity, let us reduce the

dimensionality of the system from 3 to 2 and accordingly

the number of valence electrons and degenerate valence

states by one p-electron. In addition, we need to replace

the sextet rule with a quartet rule, as we have dropped

the number of degenerate valence states by one. When

counting the number of atoms and electrons represented

in Fig. 4, one can ascertain that it is necessary to in-

troduce one vacancy for each pair of excess electrons in

order to maintain the quartet rule. Generalization to 3

dimensions and 3 degenerate p-orbital states would make

it necessary to compensate each 3 excess electrons with

1 vacancy, as suggested in the (GeTe)1−x(VacSb2Te3)x

nomenclature. Of course, the precise number of vacancies

will be effected by additional system-specific energy and

entropy arguments, for example it seems particularly ben-

eficial to eliminate Ge-Te and Sb-Te bonds in Ge-Sb-Te

compounds [40], but the current counting scheme should

give at least a semi-quantitative guideline for the vacancy

count.

Fig. 4. Schematic representation of chemical bonding in a

Peierls distorted system that contains predominantly atoms

providing two valence electrons (black circles, to be associated

with Sb atoms), two atoms each providing three valence elec-

trons (red squares, to be associated with Te atoms), and one

vacancy. Shaded, grey circles indicate periodic images of atoms.

Thick blue lines represent short bonds or lone electron pairs

on atoms. In the picture, one circular atom right next to the

vacancy would have a formal negative charge, i.e., the circle

with the lone electron pair, while one square atom would have

a formal positive charge, i.e., the square without lone electron

pair.

Given the formal charges that one may assign to atoms

in Fig. 4, it is tempting to speculate that Te atoms tend to

be located with increased probability next to a vacancy.

This local structure would allow atoms to retain a zero

formal charge. Conversely, if Te does not sit right next

to a vacancy it will have a formal positive charge, which

would not be particularly beneficial, because of Te’s rela-

tively large electron affinity. Specifically, in Fig. 4 it would

appear energetically beneficial to swap the round atom

with one lone pair (representing a negatively charged Sb
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atom) with the square atom without lone pair (represent-

ing a positively charged Te atom). The current analysis

thus predicts that vacancies should be generated predom-

inantly close to Te atoms. An additional phenomenologi-

cal argument for why Te should prefer to sit close to va-

cancies is that their slightly negative charge makes them

have a larger effective radius, which induces an enhanced

need for free volume. Due to the “nearsightedness” of

chemistry [42] one may argue that similar statements hold

when the systems are not exactly at half filling. Indeed

ab-initio calculations of GeTe [43], Ge1Sb2Te4 [40], and

Ge2Sb2Te5 [44] demonstrate that (also non-stoichiometric)

vacancies preferentially sit close to Te.

3.2 Electronic structure of Sb and Ge0.15Sb0.85

While the quantitative analysis of the last section was

mainly concerned with the electronic DOS of systems that

are trying to open their gap with ordering of chemical

species onto sublattices, we will now focus entirely on

Peierls distorted systems. We start with the well-known

analysis of the DOS of pure Sb both in its hypothetical

simple cubic reference as well as in the Peierls distorted

simple cubic phase, see Fig. 5. While similar analysis have

been published before, e.g., in Refs. [39,45], it might be in-

teresting to recalculate the data with the approaches used

for this and our previous work [29].

It is interesting to note that the effects discussed in

the theory section on the one-dimensional tight-binding

model, are borne out much more clearly in Fig. 5 than

in Fig. 3. An important reason certainly is that in the

Fig. 5. (a) Electronic density of states, n(E), of pure Sb

and (b) integrated DOS, N(E) =
∫

dE n(E). Dotted (black)

lines refer to a hypothetical simple cubic reference phase at the

experimental density while the solid (green) lines represent the

Peierls-distorted A7 structure.

latter case, lines are smearing out due to the finite size of

the disordered system and that k-point sampling does not

lead to a better representation of the disorder.

The DOS of crystalline Ge0.15Sb0.85, which will be

shown in the next section, is similar to the one of pure

Sb. The main difference is that the gap due to the Peierls

distortion is opening up below the Fermi energy, which is

indicative of Ge0.15Sb0.85 being a hole conductor.
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4 Disordered PCMs

4.1 Computational methodology

The computational aspects of this work are predominantly

concerned with the post analysis of molecular dynamics

simulations, which were presented in Ref. [29]. This post

analysis is motivated by the author’s partial disagreement

with some interpretations given in Ref. [29]. (Publish-

ing with many co-authors sometimes makes compromis-

ing necessary if one wants to see one’s own ideas and re-

sults disseminated within reasonable time scales.) Details

of the MD simulations, whose accuracy the author does

not doubt, can be found in Ref. [29].

The post analysis was done with the plane-wave Quan-

tum Espresso [46] and Abinit [47,48] packages. The ex-

change correlation was approximated with the BLYP den-

sity functional [49,50] and Troullier-Martins type pseodopo-

tentials were employed [51].

4.2 Effect of umbrella flip on electronic structure

This section will be concerned with the question of how

an isolated umbrella flip [5] affects the electronic struc-

ture of a solid whose original local structure is that of the

ordered phase. As mentioned in the introduction, Welnic

et al.: [6] demonstrated that the local umbrella flip of a

Ge atom into the tetrahedral position indeed increases the

electronic gap. Intuitively, one would have expected that

the main change in the electronic charge density would be

associated with the germanium atoms, as they would usu-

ally be expected to adopt an sp3 hybridized state. How-

ever, in their calculation of a spinel model crystal with

composition GeSb2Te3, Welnic et al. found that the hy-

bridization changed more strongly on Te and Sb atoms

than on Ge atoms. In contrast, Shakhvorostov et al. [29]

confirmed the expected hybridization change on some Ge

atoms for a fully relaxed structure of a quenched Ge-Sb

liquid. Already Akola and Jones [52] had found that the

≈ 33% sp3-bonding Ge atoms can be made responsible

for the narrowing of the π-band in amorphous Ge2Sb2Te5

and the reduced weight of the density of states near the

Fermi level in the disordered phase. At this point, I do

not intend to claim that the changes in the DOS near the

Fermi energy are (always) responsible for the contrast in

optical and electric properties between ordered and disor-

dered PCMs and that other effects, in particular Ander-

son localization are not of relevenance. These issues can

be material dependent.

In the following, Shakhvorostov et al.’s result will be

used as starting point for our working hypothesis, namely

that many Ge atoms adopt an sp3 configuration when

moving to its tetrahedral symmetry site and discuss how

the electron count presented in Fig. 4 needs to be modified

for this particular local configuration change. This picture

implies that the 4s-electrons of Ge should no longer be

considered core but valence electrons. For the heavier Sb

atoms, let us keep considering the outer s electrons to be

core electrons. Using these assumptions, I will speculate

on the implications of the umbrella flip on the electronic

structure.
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For the sake of simplicity, let us furthermore assume

that the crystal of consideration is Peierls distorted and

close to half filling in its simple cubic reference state, e.g.,

an Sb crystal with a few Ge impurities. (Crystals such as

cubic Ge2Sb2Te5 would have to be interpreted within a

resonance bond picture to satisfy the sextet rule, which

in the present context is rather tedious.) The Ge-doped

Sb crystal, when Peierls distorted, would be considered a

hole conductor, because all Sb atoms contribute as many

valence electrons as they have covalently bonded neigh-

bors, while each Ge contributes one less electron, resulting

in one hole per Ge. When the umbrella flip occurs, one

additional bond between Ge and Sb is formed. The re-

quired electrons to form this bond are provided by the in-

creased number of valence electrons, which come from the

hybridization change of Ge. In this scenario the number

of holes thus remains unchanged. In a real-space descrip-

tion, the hole (formally) moves from Ge, which is now sp3-

hybridized, to the Sb atom. The Sb atom is now trying to

grasp on to the umbrella flipped Ge atom, for which it has

to (partly) deploy electrons from already existing bonds.

Similarly, when a Ge atom undergoes an umbrella flip in

the vicinity of a Te atom, the original hole on the Ge and

the original excess electron on Te would combine, leaving

the balance of holes and excess charges per atom unal-

tered. This concept is consistent with the large changes in

the electronic charge density on Te and Sb atoms found by

Welnic et al. [6]. Lastly, when two Ge atoms bond there

is one s-electron pair in excess, and the alloy may move

away from half filling. It may be that for each three such

processes, the alloy is trying to create one vacancy, though

this appears difficult in the solid phase. Of course, the cur-

rent analysis cannot make any claims on the degree with

which excess electrons and/or holes are localized near the

atoms to which they were formally assigned.

When the “umbrella flipping” Ge atom grasps on to

another Ge atom, then a new situation arises: Now it is

possible that both atoms bring their s-electrons up to (for-

mally) being valence electrons, which would be a mecha-

nism to eliminate holes. Other possibilities to eliminate

holes would be the formation of low-coordinated atoms,

as they are found relatively frequently in liquid phases of

Ge-Sb-Te compositions [53]. Despite the occurrence of a

few “under-coordinated” atoms and Ge-Ge bonds of sp3-

hybridized Ge atoms, the most dramatic differences in the

local structure between glass and crystal can be associated

with the umbrella flip. Therefore, it will be meaningful to

interpret changes in the electronic DOS predominantly in

terms of the umbrella flip.

The electronic DOS of the glassy and the crystalline

phase are compared in Fig. 6. One can notice that the

electronic energy decreases with increasing disorder. This

concerns in particular the s-electrons at the left end of the

s-band. This effect can be taken as an indication that these

electrons now participate in the bonding. Interestingly, the

plateau indicative of the Peierls distortion in the crystal

at N(E) = 0.5 has disappeared in the glassy phase.

In the further discussion of Fig. 6, let us assume that

the dip in the electronic DOS near the Fermi energy, EF ,

is underestimated in the DFT calculation, potentially be-
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Fig. 6. (a) Electronic density of states, n(E), of eutectic Ge-

Sb and (b) integrated DOS, N(E) =
∫

dE n(E). Solid (black)

lines and circles refer to ordered alloys, while dashed (red) lines

and crosses stand for alloys that were quenched from high to

room temperature.

cause of the finite size of our system. In this sense, I would

like to argue that the states left of the dip as p-valence

band while those right to the dip belong to the conduction

band. In this picture, crystalline eutectic Ge-Sb would be

a hole conductor as the dip is located to the right of EF : In

the crystal, the slope in N(E) is smallest near N(E) = 2.5,

while due to the 15% Ge atoms, states are only occu-

pied up to a value close to N(E) = 2.5 − 0.15 = 2.35.

It seems plausible that the dip in the electronic DOS is

shifted to the left, due to low-coordinated atoms and Ge-

Ge bonds. Moreover, the dip has become deeper, owing to

the umbrella flip, as one may conjecture from Welnic et

al.’s work [6].

4.3 Relaxation in Ge0.15Sb0.85 glass

When a liquid is supercooled, the common point of view is

that the fluid structure becomes kinetically arrested dur-

ing the quench so that the relaxation toward the solid does

not take place on the relevant experimental time scales. In

this section, I would like to argue that this view is not ap-

propriate for the structural relaxation in disordered PCM

alloys. Instead, it seems as though the glass relaxes away

from the crystal, or in other words, the local structure in

the liquid is closer to the local crystalline structure than

that of the glass, which may be a new paradigm for relax-

ation in glassy systems. Conversely, the metal-insulator

transition itself follows the well-known trends from the

Peierls distortion, by which a structural change, such as

the umbrella flip [5,6,54], induces a change in the band

gap. Due to this argument, the claim in Ref. [29] that the

electronic driving force behind the phase change has the

potential to change the interconversion paradigm in this

material class appears to be a gross overstatement.

In order to understand that the Peierls scenario applies

on a qualitative level, let us examine the individual con-

tributions to the net energy for the various structures in

table 1: At ambient conditions (meaning temperature and

density taken at the experimental density of eutectic Ge-

Sb), the glass has a much reduced electronic energy and a

much increased ionic energy as compared to the (already)
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Table 1. Comparison of electronic, ionic, and total energies

(all in eV) for a Ge0.15Sb0.85 system consisting of N = 192

atoms at different volumes per atom (in Å3). The ionic con-

tribution contains the ion-ion interaction and the coupling to

a constant-density and charge-neutralizing background. The

ambient crystal is taken as reference.

system electronic ionic total V /atom

liquid, 973K -25.32 25.67 0.348 29.64

annealed glass -25.00 25.22 0.222 29.64

regular crystal 0.00 0.0 0.000 29.64

stretched crystal -12.20 12.53 0.323 38.47

stretched glass -20.51 20.74 0.231 38.47

Peierls-distorted crystal. This is exactly the same compe-

tition as for a regular Peierls instability: The electronic

energy is decreased (and consequently the gap increased)

at the expense of the ionic energy. Although a symmetry-

argument, which is usually required for the Peierls distor-

tion to be invoked, cannot be used in a straight-forward

manner, it seems obvious that the creation of a tetrahe-

dral Ge atom eliminates most previously allowed (local)

symmetry transformations without adding new ones. (See

also the first-principle work on reentrant Peierls distor-

tions in liquid GeTe by Raty et al. [54]) Furthermore, it is

not clear why electrons would only try to remove the de-

generacy of occupied and unoccupied states at the Fermi

energy, when the degeneracy is due to symmetry rather

than accidental.

It may be important to mention that the ionic ener-

gies listed in table 1 contain the electrostatic energy of

core ions with four elementary charges for Ge and five for

Sb, within a neutralizing and homogeneous background.

The latter only accounts for a constant offset that is in-

dependent of the ionic configuration. A more meaningful

estimate of “true” ionic energies can be obtained by as-

signing more meaningful partial charges for the atoms. For

an order-of-magnitude calculation, let us use the Bader

ionic charges listed in figure 15 of Ref. [44], which are

a little less than a factor of ten smaller than the “naked”

charges. This would renormalize the estimates for the ionic

energy differences by a little less than a factor of 100, e.g.,

at a volume of 29.64 Å3/atom, the ionic energy of the

glass is a little more than ≈0.252 eV higher than that

of the crystal. This in turn implies that the “true” elec-

tronic energy must have changed in a rather undramatic

way given the 0.222 eV net difference between the two

phases, which is consistent with frequently observed sub-

tle differences in the electronic DOS between ordered and

disordered PCMs.

It may also be worth investigating the relaxation dy-

namics that follows a simulation in which a crystal was

stretched up to the point where it became unstable. This

is done in figure 7. One can see that the ionic energy

increases as a function of time (at fixed density!), while

the electronic energy descreases. Thus, the ions must be

adopting a structure which is less homogeneous and/or

less closed packed and thus, the relaxation is driven pre-

dominantly by the electrons. In fact, there is an almost

perfect correlation of the electronic energy with the net

energy and anticorrelation with the ionic energy, as one
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would expect from a Peierls-like scenario. Note that a sim-

ilar relaxation scenario should also apply if the the pres-

ence of valence bonding in the crystal and its absence in

the glass were the main distinguishing features between

the ordered and disordered compounds.

Fig. 7. Time dependence of ionic and electronic energy at

fixed density after a stretched crystal became unstable and

disordered.

Despite many similarities with a regular Peierl’s in-

stability, we suggest that the following three differences

may be important when rationalizing the metal-insulator

transition in PCMs: (a) There is an energy barrier that a

Ge-atom has to overcome in order to move into the tetra-

hedral position, so that structural changes must be discon-

tinuous, unlike those in the linear tight-binding chain, in

which the atoms can move continuously. (b) The number

of electrons that are involved in the formation of chemical

bonds has changed through the umbrella flip. (c) When

holes are present in the crystal (e.g. in Ge-Sb-Te when

the Te-concentration exceeds that of Ge), chemical bonds

need to be eliminated in order to eliminate holes and to

open up the gap.

When the glass is reached via tensile loading, see sec-

tion 5, the eutectic Ge-Sb remains metastable up to p =

−4 GPa, where each atom occupies on average a volume of

38.47 Å3. At the corresponding density, the glass has again

the lower electronic energy. Similarly, the ionic energy is

again much enhanced in comparison to the metastable

crystal, as can be seen in table 1. It is also interesting

to note that the low-density crystal has the larger ionic

energy than the high-density crystal. This is consistent

with the discussion in section 2.2, where it was argued

that electrons “win” at small densities while ions keep the

upper hand at high pressure.

Lastly, it is interesting to compare the high-temperature

liquid to the glass at ambient temperatures. From a purely

energetic point of view, one might argue that the alloy has

relaxed toward the crystal in both electronic and ionic

energy. However, analysis of the structures bears an in-

teresting observation [53]: At 973 K, the number of 4-

coordinated Ge atoms in eutectic Ge-Sb is just a little be-

low 50% versus 0% in the crystal and close to 70% in the

room-temperature glass. Along the same lines, the num-

ber of three-coordinated Ge atoms (three short and six

long bonds) in the crystal is 100%, which decreases to just

above 40% in the 973 K melt and further to less than 30%

in the relaxed glass. In these coordination statistics, the

glass appears to relax away from the crystal to a different

structure, in which the Ge atoms have different coordina-

tion than in the A7 structure.
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5 Response of PCMs to pressure

When PCMs are compressed at ambient temperature, it

is possible to observe amorphization of crystalline com-

pounds, as is the case for Ge2Sb2Te5 [55,56], while an-

other PCM, namely Ge0.15Sb0.85 [29], undergoes a tran-

sition from amorphous to crystalline upon densification.

In this section, I would like to discuss what leads to this

different behaviour. Both types of behaviour can be un-

derstood in reasonable detail from simple free-volume type

considerations.

If a compound contains stoichiometric vacancies, such

as crystalline Ge2Sb2Te5, is compressed, then its vacan-

cies are going to be squeezed out before other processes

occur [29]. A more refined picture was given by Cavarati

et al. [56], who found that Te atoms preferentially fill the

voids and that the umbrella flip is not induced through the

densification. This behavior is easily rationalized within

the developed picture: Te atoms are negatively charged,

thus have the largest radius, and hence the largest need

for free volume when pressure raises.

When vacancies are being squeezed out, new bonds

are formed, which moves the system away from being

half filled in the original reference structure, which implies

that a doubling of lattice constant via Peierls or ordering

no longer opens a gap at the Fermi level. Consequently,

the number of electrons in the conduction band has in-

creased after pressurization and the disordered system has

enhanced conductivity.

Why does eutectic Ge-Sb respond different to pressure

than Ge2Sb2Te5? When no stoichiometric vacancies are

present new mechanisms will be required to accomodate

external pressure. Central to the reasoning presented here

will be the coordination of Ge: The tetrahedral site has

much smaller free volume than the (distorted) octahedral

site. As a consequence, large pressures should make the

Ge atoms favor the octahedral coordination while small or

negative pressure should make the Ge atom move into the

tetrahedral site. This is the reason why Ge0.15Sb0.85 does

not behave the same way under pressure as Ge2Sb2Te5 is

that it contains no vacancies [29] and this is why the local

order of amorphous Ge-doped Sb switches to the (local)

order of crystalline Sb when the pressure is sufficiently

high. Ref. [29] stressed Le Chateliers principle as an ex-

planation for the phenomenon, which most certainly is an

insufficient explanation: Many different solids, as diverse

as silica, polyethylene, or regular metals, tend to have dif-

ferent densities in their glassy and amorphous phase, yet,

they cannot be converted reversibly into one another at

short time scales and room temperature via the applica-

tion of tensile and compressive loads.

Central to the amorphous-to-crystalline transforma-

tion is the local structure of PCMs: If the umbrella-flip

picture is true, then, as mentioned above, pressure will

squeeze the Ge atoms from their tetrahedral coordination

into the alternative octahedral location. The kinetics can

be fast because the motion is quasi-displacive and non-

cooperative. And the process can be reversed under tensile

loads for the very same reason. These thoughts that follow

in a natural fashion from Kolobov’s results is what moti-

vated me to initiate the pressure experiments on eutectic
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Ge-Sb and not Le Chatelier’s principle as falsely stated in

Ref. [29].

As the crystal is lower in energy than the glass, the

pressure-induced crystallization observed in Ref. [29] is ir-

reversible for positive pressures, i.e., the crystal retains its

long-range order after decompression to ambient condi-

tions. In first-principle molecular dynamics simulations, it

is easily possible to apply large tensile loads in the form

of negative pressures. When this is done, the Ge atoms

move back into the tetrahedral site and the system de-

creases its conductivity to similar values as those of ther-

mally quenched fluids [29,53]. This means that including

negative pressure, the system can be switched reversibly

between being conducting and being insulating. It may

be possible to achieve the required large negative pressure

on very small scales, where materials tend to have larger

hardness and toughness than on macroscopic scales.

If it were indeed possible to achieve the required posi-

tive and negative stresses at the nanoscale to switch PCMs,

the question arises to what extent the materials would de-

grade, e.g., if the layered compounds would delaminate.

After inspecting the structural evolution of the alloys dur-

ing decompression, I would like to suggest that the systems

are self-healing: The onset of delamination is required for

the Ge atoms to find a tetrahedral site worth jumping

into. Once the jump has occurred, the Ge atom moves the

separating layers back together via strong sp3 bonds.

This section will be concluded with a rule-of-thumb

speculation on when pressure should lead to amorphiza-

tion and when it should induce crystallization. Given the

electron counts in the simple cubic reference phase of Ge-

Sb-Te, the following rule should hold: If the the concen-

tration of Te is higher than that of Ge, then vacancies will

be present and crystals will become amorphous during

densification. Conversely, when there are more Ge than

Te atoms, amorphous compounds will crystallize under

compressive stress. In the latter case, the process should

be reversible, opening the possibility to switch PCMs via

pressure.

6 Conclusions

In this paper, an attempt was made to rationalize the

behavior of PCMs, in particular that of Ge-Sb-Te alloys,

from elementary terms. This attempt shall be quickly re-

capitulated here. Starting point is the description of these

solids from an undistorted simple cubic reference struc-

ture with random occupation of the elements on the lat-

tice sites. From this reference structure, energy reduction

during symmetry breaking is particularly large when the

alloys are at half filling, i.e., if they create one vacancy for

each three tellurium atoms in excess of germanium atoms.

The symmetry breaking in the solid can be either a Peierls

distortion in Sb-rich PCMs or ordering of species onto sub-

lattices in compounds with large Te concentration. The

symmetry breaking in the crystal opens up an incomplete

or a small gap.

The developped picture allows one to argue that Te

atoms like to sit close to vacancies as this makes them

retain a neutral formal charge. Including charge transfer

effects into the description (Te has slightly larger elec-
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tronegativity than Ge and Sb) makes it plausible that Te

atoms adopt a slightly larger radius, which enhances their

need for free volume in comparison to that of Ge and Sb

and thus makes these atoms move into the vacancies sites

first when the pressure raises.

The main emphasis of this work, however, was laid on

vacancy-free Ge-doped Sb and the umbrella flip of the Ge

atom from its octahedral coordination in the crystal to the

tetrahedral site in the glass. It was argued that this struc-

tural change does not move the alloys away from being the

distorted structure of a formally half-filled crystal, as the

outer s-electron of the Ge atom (or that of another group

IV element) now participates more strongly in the bonding

and thus provides the correct number of electrons for the

newly created bond. Due to Ge now being in its natural

coordination, the gap has opened up, or at least the DOS

near the Fermi energy is reduced. Given that local struc-

tures differ between ordered and disordered Ge-doped Sb,

it is doubtful that a comparison of participation ratios of

electron near the Fermi energy is meaningful.

In this paper, it was also shown how the pressure-

induced, amorphous-to-crystal transition in vacancy-free

PCMs arises as a natural consequence from free volume

arguments based on the umbrella flip picture: The group

IV elements favor the larger (potentially distorted) oc-

tahedral coordination, while small or negative pressures

bias in favor of the tetrahedral bonding. Using these ar-

guments, it may be possible to fine tune the transition

pressures via the atomic radius ratio of the group IV and

group V elements composing the PCM.

Lastly, unusual relaxation dynamics were identified in

the glassy phase of eutectic Ge-Sb: The number of four-

coordinated Ge atoms increase with time and that of crystal-

like three-coordinated atoms (three short and three long

bonds) decreases. Likewise, ionic energy (which is mini-

mized in crystalline Ge-doped Sb) increases with time (at

constant density) as the glass ages. Thus, the local struc-

tures around Ge tend to become less crystal like with time,

which may explain the relatively long life time of their

amorphous state.
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for electronic gap-driven metal-semiconductor transition in

phase-change materials. Proc. Natl. Acad. Sci., 106:10907,

2009.

30. J.-P. Gaspard, A. Pellegatti, F. Marinelli, and C. Bichara.

Peierls instabilities in covalent structures i. electronic stuc-

ture, cohesion and the z = 8 − n rule. Phil. Mag. B,

77:727–744, 1988.

31. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kub-

ota, Y. Tabata, and M. Takata. Single structure widely dis-

tributed in a GeTe-Sb2Te3 pseudobinary system: A rock

salt structure is retained by intrinsically containing an

enormous number of vacancies within its crystal. Inorg.

Chem., 45:2235–2241, 2006.

32. J. K. Burdett and T. M. McLarnan. A study of the arsenic,

black phosphorus, and other structures derived from rock

salt by bond-breaking processes. i. structural enumeration.

J. Chem. Phys., 75:5764–5773, 1981.

33. J. K. Burdett and S. Lee. Peierls distortions in two and

three dimensions and the structure of AB solids. J. Am.

Chem. Soc., 105:1079–1083, 1983.

34. J. A. Venables and C. A. English. Acta Crystallogr. B,

30:929, 1974.

35. In the Pa3 phase, N2 molecules occupy face center cubic

lattice positions. Each director of one of the four molecules
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