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MATHEMATICAL APPENDIX

Getting from Eq. (1) to Eq. (2)

By definition:

Pr(p) = 〈δ{p − σ(r)}〉 (11)

=
1

2π

∫ +∞

−∞

dk 〈exp[ik{p − σ(r)}]〉 (12)

=
1

2π

∫ +∞

−∞

dk 〈exp[ik{p − p0 − ∆σ(r)]〉 (13)

Now expand the exponential in a Taylor series with respect to the small parameter ∆σ(r)

Pr(p) =
1

2π

∫ +∞

−∞

dk exp[ik{p − p0}]

×

〈

1 − ik∆σ −
k2∆σ(r)2

2
+ O

(

k3∆σ3
)

〉

(14)

The first moment of ∆σ disappears by definition. The remaining terms in 〈. . . 〉 can be

written as exp[−k2〈∆σ2/2〉] plus corrections of order ∆σ3 (or alternatively the third-order

cumulant). While the derivation is exact only up to third order, there are many higher-order

terms that turn out reasonably accurate not quite by coincidence, i.e., the expansion can be

shown to be exact if ∆σ is a Gaussian random variable. Thus, Pr(p) can be approximated

by the Gaussian integral

Pr(p) ≈
1

2π

∫ +∞

−∞

dk exp[ik{p − p0} − k2〈∆σ2〉/2], (15)

whose solution is given in Eq. (2).

Elastic energy of a semi-infinite solid and Eq. (3)

The only possibility to write the elastic energy per surface area of a semi-infinite, isotropic

elastic solid is
E

A
=

1

2

∑

q

qẼ|ũ(q)|2 (16)
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if the elastic properties of the solid are fully contained in a parameter Ẽ with the unit of

pressure (Pascal). The field conjugate to the displacement u, say σ(r), will be given by

δE/δu(r) or in reciprocal space by ∂E/∂ũ(q), i.e.,

σ̃(q) = qẼ ũ(q). (17)

Analyzing the unit of σ̃(q) reveals that it can indeed be associated with a stress field.

Comparison of this equation with Eq. (3) in this manuscript and with Eq. (12) in Ref. 8

yields Ẽ = E ′/2, where E ′ is defined in the main text here and substitutes the term (Mzz)
−1

used in Ref. 8. See also the dispersion relations for the generalized stiffness coefficient Φzz

in Fig. 1 of Ref. 19, which also increase linearly with q at small q.

Getting to Eq. (10)

Starting point is the following representation of E

E = v0 e−z0/ζ

∫

d2r e{h(r)−u(r)}/ζ

+
A

4

∑

q

qE ′ |ũ(q)|2 +
1

A

∫

d2r p0z(r), (18)

which is a combination of Eqs. (6) and (7). Keep in mind that z(r) = z0 + u(r) with

ũ(q = 0) = 0. Also, the coordinate system has been chosen to have h̃(q = 0) disappear.

Taking the derivative of E with respect to z0 yields Eq. (8), since the elastic energy does

not depend on z0 but only on ũ(q 6= 0).

Now express the interaction potential in a 2nd-order cumulant expansion, see Eq. (9).

Taking the derivative with respect to an arbitrary ũ(q′) yields:

1

A

∂E

∂ũ(q)
=

h̃(q) − ũ(q)

ζ2
× v0 e



−
z0
ζ

+
P

q

|h̃(q)−ũ(q)|2

2ζ2

ff

+
qE ′

2
ũ(q′). (19)

The first term on the r.h.s. of this equation can be simplified with the help of Eq. (8).

Requiring ∂E/∂ũ(q) to disappear means:

0 =
{

h̃(q′) − ũ(q′)
} p0

ζ
+

qE ′

2
ũ(q′). (20)

This equation can be solved for ũ(q′) and the result is given in Eq. (10).

2



Relation to diffusion equation representation

A detailed discussion will be given in a future publication. Here it shall only be sketched

that the link between the diffusion equation representation and the cumulant expansion is an

integral equation for the pressure distribution, similar to the one stated by W. Manners and

J. A. Greenwood [11] and by Campana et al. [10]. To make use of the cumulant expansion

approach in a rigorous way, it will be necessary to introduce a conditional or transition

probability T (p+ η +∆η|p−∆p, η), which states how likely it is to observe a stress p at the

new magnification η + ∆η given that we observed a stress p − ∆p at the old magnification

η.

Pr(p, η + ∆η) =

∫ +∞

−∞

d(∆p)T (p, η + ∆η|p − ∆p, η) Pr(p − ∆p, η). (21)

If we knew T (. . . ) then we could solve Pr(p, η) via this integral equation.

Similar to the formal definition of the stress distribution one can define T (. . . ) with the

help of δ functions to be:

T (p, η + ∆η|p − ∆p, η) =
〈δ{p − σ(r, η + ∆η)}δ{p − ∆p − σ(r, η)}〉

〈δ{p − ∆p − σ(r, η)}〉
(22)

where σ(r, η) is the stress at r seen at magnification η.

T (. . . ) can be treated in terms of a cumulant expansion just like Pr(p). For colored noise,

it is possible to show that the local expectation value of σ does not change upon a change

in magnification η and that the expected variance 〈∆σ2〉 does not depend on σ. See, for

example, the not quite rigorous derivation of Persson theory in Ref. [10], in which Persson’s

diffusion equation is obtained from the integral equation. This equation reads

∂ Pr(p, η)

∂η
=

1

2
D(η)

∂2 Pr(p, η)

∂σ2
, (23)

where D(η) = 〈∆σ2〉. Its solution to it is given in Eq. (2).
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