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A statistical field theory is formulated, which allows one to calculate the pressure distribution
Pr(p) in a contact formed by an elastic body and a rigid counter face of arbitrary topography. It is
a cumulant expansion, which contains Persson’s contact mechanics theory as the leading-order term.
Our approach provides a framework with which corrections can now be derived systematically. As
an example, Pr(p) is calculated to high accuracy for exponentially repulsive solids. Non-Gaussian
tails in Pr(p) can be rationalized for surfaces whose height spectra differ from colored noise.

PACS numbers: 81.40.Pq,46.55.+d

Contact mechanics plays a central role in tribology [1–
3]. The dependence of frictional forces on the load can
be a function of contact mechanics and the amount of
wear that occurs under sliding depends critically on the
distribution of contact pressures. However, despite its
importance, for example, in the design of durable, low-
weight and thus fuel-efficient aluminum engines [4], there
is no generally accepted theory for contact mechanics.
The lack of such a theory is mainly due to the multi-
scale nature of surface topographies, which impedes our
ability to predict contact pressures even for devices as
small as microelectromechanical systems [5, 6].

Traditionally, contact mechanics calculations are based
on so-called overlap models, which were pioneered by
Greenwood and Williamson (GW) [7]. In overlap mod-
els, parabolic or elliptic hills (also called asperities) are
identified and assumed to get flattened as they approach
the counter face provided that their summit height in
the undeformed surface is above a given threshold value.
Depending on the distribution of asperity heights, radii
of curvature, etc., and depending on the single-asperity
contact mechanics, predictions are made, for example,
for the relation between real contact area and external
load. A valuable outcome of GW models is an explana-
tion for the frequently observed linearity between load
and true contact area, which occurs despite non-linear,
single-asperity relations.

Despite their success and widespread use, overlap mod-
els suffer from limitations. First, it is often far from ob-
vious what to define as an asperity, how to handle small
asperities that reside on top of large asperities, and thus
how to construct their statistics unambiguously. Second,
overlap models neglect the elastic coupling between as-
perities [8]. They do not take into account that all asper-
ities in the vicinity of a high asperity are being pushed
down when that high asperity comes into contact with
the counter face. This shortcoming produces contact ar-
eas that are too clustered as compared to numerically
exact calculations, be it on self-affine surfaces [9] or on
complex topographies of aluminum-silicon alloys [10].

An alternative approach to contact mechanics was sug-
gested by Persson in 2001 [8]. Stress σ or pressure
p were recognized as scale-dependent properties. The

more microscopic details of the surface profiles are re-
solved the larger the (calculated/observed) fluctuations
in p and thus the broader the pressure distribution
Pr(p). Motivated by this insight, a diffusion equation
for Pr(p) was derived, which describes the broadening
of the magnification-dependent Pr(p, η) with increasing
magnification η. In this theory, the diffusion coefficient D
is proportional to the surface roughness on a wavelength
that can just be resolved at a given magnification η. This
parameterization leads to a broadening of Pr(p, η) with
increasing η that is independent of the pressure p, which
turns Pr(p) into a Gaussian. Constraints motivated by
the observation that p cannot be negative for purely re-
pulsive walls can be added a-posteriori, for example by
adding an “image Gaussian” to the original Gaussian.
This leads to a deviation from Gaussians at small values
of p but leaves the tails at large p unaffected. A critical
discussion of Persson theory was given by Manners and
Greenwood [11].

When applied to contact mechanics, Persson theory
and overlap models show, give or take, similar deviations
from numerically exact calculations [9, 12, 13]. In the de-
bate which approach is more accurate, one should keep
in mind that neither one can be exact. The required in-
put information, two-point height-difference correlation
functions (HDCFs) in Persson theory and asperity statis-
tics for GW models, is insufficient to fully reconstruct
the stochastic properties of the surfaces, which in turn
makes it impossible to predict rigorously Pr(p). However,
an HDCF-type approach bears the promise that higher-
order HDCFs can be included into it, whereby corrections
could be added systematically until the desired accuracy
is achieved. Providing a framework for doing this is the
purpose of this work.

Starting point of our theory will be the formal defini-
tion of the pressure distribution Pr(p) as

Pr(p) = 〈δ{p − σ(r)}〉 (1)

where 〈. . . 〉 stands for an average over the full interface
and σ(r) for the stress at the lateral position r. Writing

Pr(p) as (1/2π)
∫ +∞

−∞
dk 〈exp[ik{p − σ(r)}]〉 , allows one

to apply the concept of cumulant expansions, i.e., the
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exponential function can be expanded into a Taylor se-
ries, the expectation values of the various moments of
the stress are taken, and the resulting expressions can
be cast back into the exponential function up to the de-
sired order [14]. To leading-order one obtains (see the
mathematical appendix in EPAPS Document No. [] for
additional intermediate steps in the algebra throughout
the manuscript)

Pr(p) =
exp

{

−(p − p0)
2/2〈∆σ2〉

}

√

2π 〈∆σ2〉
{1 + O(K3)} (2)

Here, we have introduced the mean macroscopic pressure
p0 = 〈σ〉, the local fluctuation in stress ∆σ(r) = σ(r)−p0,
its second moment 〈∆σ2〉, and the third-order cumulant
K3 = 〈∆σ3〉 − p0〈∆σ2〉.

At this point, we have essentially arrived at the solu-
tion of Persson’s diffusion equation for Pr(p). The re-
maining steps are: Parameterize the stress fluctuation
under the assumption that it is similar to the one that
one would have under full contact (see the treatment be-
low for clarification), add the mirror Gaussian in the case
of repulsive walls. Then conserve the norm,

∫ ∞

0
dp Pr(p)

must be unity, by adding a δ-function contribution at
p = 0, and interpret the prefactor to the δ-function as
the relative surface area that is not in contact with the
counter face.

The new feature of Eq. (2) is that it provides a recipe
for how to systematically include corrections in the form
of higher-order cumulants. Expressions similar to those
occurring in Eq. (2) can be derived systematically to ar-
bitrary order in the cumulants, i.e., knowledge of the var-
ious moments of the stress allow one to reconstruct the
pressure distribution. We thus need a scheme with which
one can calculate the various moments or cumulants of
the stress. In simple harmonic systems, the gradient of
the displacement u can be related to the stress σ so that
the knowledge of the various moments of ∇u will allow
us to calculate the moments in σ, e.g.,

〈σ∗(q)σ(q)〉 = (qE′)
2
〈u∗(q)u(q)〉/4, (3)

where E′ = E/(1 − ν2), E being the bulk elastic modu-
lus and ν the Poisson ratio [8]. Similar relations hold for
higher-order moments of the stress field. Before proceed-
ing with the theory, we want to clarify that we assume
spatial isotropy, the small-slope approximation, and that
all the elasticity is mapped into one solid and all the
roughness into the counter face [2]. Including anhar-
monicity is desirable but would require more complicated
treatments. Phase field modeling may be a promising
avenue for a future perturbative generalization of the
present theory [15]. As of now, we will merely be con-
cerned with purely harmonic solids.

For a given normal load and interaction between the
two solids, the normal position z(r) of the elastic solid’s
surface will depend on the rigid substrate’s topography

h(r). To streamline the representation, we will some-
times write z(r) = z0 + u(r), where z0 will be called the
centroid. u(r) plays the role of a displacement field with
〈u(r)〉 = 0. Furthermore, we will chose the coordinate
system such that 〈h(r)〉 = 0. Tildes will indicate Fourier
transforms, e.g., ũ(q) = (1/A)

∫

d2r exp(iqr)u(r), and q

is a wave vector compatible with the in-plane periodic
boundary conditions. A is the “macroscopic” contact
area. If the system is sufficiently well behaved, it will
be possible to expand the ũ(q) into a power series of the
h̃(q). The leading-order, symmetry-allowed terms (wave
vectors in each term on the r.h.s. of the following equa-
tion have to add up to q) have the form

ũ(q) = G1(q)h̃(q) +
∑

q′

G2(q,q′)h̃(q − q
′)h̃(q′) + . . . ,

(4)
where the expansion coefficients Gn(q,q′, ...) will in gen-
eral depend on the normal load and the interaction be-
tween the surfaces, see the treatment for a model system
further below.

Given Eq. (4), the second moment or second-order cu-
mulant of ũ(q) can be written as

〈|ũ(q)|2〉 = |G1(q)|
2
〈

h̃∗(q)h̃(q)
〉

+ G∗
1(q)G2(q,q′)

〈

h̃∗(q)h̃(q − q
′)h̃(q′)

〉

+ c.c

+ . . . (5)

Note that the term related to the third power in h̃ along
with many other not explicitly-mentioned terms disap-
pear for colored noise, that is, when h̃(q) and h̃(q′) are
independent random variables for all q 6= q

′. Thus, any
theory (such as Persson’s) that truncates after the first
term on the r.h.s. of Eq. (5) and that furthermore ne-
glects the higher-order cumulants on the r.h.s. of Eq. (2)
will be less accurate for surfaces whose height spectra
show correlation than for surfaces whose topography can
be characterized as colored noise.

To close our theory, it is necessary to find an expres-
sion for the expansion coefficients Gn(q). These are load
and system-specific and can thus be derived only if the
interaction between the elastic solid and its counter face
are known, because one needs this interaction to mini-
mize the total energy E of the system. Generally, the
interaction between the solids will be a functional V[g] of
the gap g(r) = z0 + u(r)− h(r) between elastic solid and
counter face. The existence of such a functional could be
proven in a similar way as that for any other functional,
e.g., as those used in either density functional theory of
electrons or classical fluids. One can thus write

E = V[g] +
A

4

∑

q

qE′ |ũ(q)|
2

+

∫

d2r p0z(r) (6)

where the term containing E′ reflects the elastic energy
and p0 is the external pressure. The solution for the dis-
placement field can be obtained by requirering that the
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functional derivative δE/δz(r) vanishes for all r. For ad-
hesive interactions, there can be more than one solution.

Whenever V[g] is sufficiently well-behaved, one can
expand the energy density into a power series of the
gap function and its derivatives. Unfortunately, this
is not the case for hard wall interactions, which com-
monly form the basis for contact mechanics theories.
While V[g] takes a simple form in that case, specifically,
V[g] = 0 if g(r) ≥ 0 everywhere and infinity otherwise,
it is not possible to expand it into a power series of the
Fourier coefficients g̃(q). Consequently, the ũ(q)’s are
non-analytical functions of the h̃(q)’s. We find numer-
ically that G1(q) = 1 if qh̃(q) is less or equal a load-
dependent threshold value while else G1(q) < 1.

The problems discussed in the previous paragraph
should not prevent one from pursuing our theory. First,
real systems do not repel in a discontinuous fashion. In
most realistic molecular simulations, repulsion is mod-
eled via exponential functions. Second, one can con-
struct differentiable potentials that mimics the behavior
of hard walls. Local exponential repulsion between walls
show precisely the desired characteristics, because nor-
mal forces increase exponentially fast with overlap and
decrease exponentially as the surfaces retract from one
another. Conclusions drawn for exponentially repulsive
walls will thus generalize to a significant degree to that of
hard walls. We wish to note that exponential repulsion
has been used extensively in modeling tribological phe-
nomena [16–18] and that pressure profiles resemble that
of hard wall interactions quite closely when parameter-
ized appropriately [19].

Finding coefficients Gn for any well-behaved V[g] can
be done in a fashion that is similar to the one, which we
will pursue here for exponential repulsion:

V[g] = v0

∫

d2r e−g(r)/ζ

= v0 e−z0/ζ

∫

d2r e{h(r)−u(r)}/ζ . (7)

v0 is a constant prefactor of unit energy per surface ele-
ment. Its precise value turns out irrelevant for the pres-
sure distribution as long as it is positive (increasing its
value would merely decrease z0 at fixed p0), and ζ is a
parameter of unit length. One can interpret ζ as a length-
scale over which interactions are smeared out and thus
associate it loosely with the inverse magnification used
in Persson theory.

In our model, p0 satisfies the equation

p0 =
V[u]

ζA
, (8)

whenever u(r) minimizes E, which can be shown by re-
quiring ∂E/∂z0 to disappear. This can be exploited in
the minimization procedure, which in principle can be
done to arbitrary accuracy by expanding the integrand

of Eq. (7) into a power series, which could then be fol-
lowed by an iterative solution for the ũ(q). Here, we will
content ourselves with a second-order cumulant expan-
sion of V[g] so that

E

A
≈ v0 exp
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+
∑

q

E′q |ũ(q)|
2

4
+ p0z0 (9)

At that level of approximation, one can solve exactly for
the ũ(q) to yield the leading expansion coefficient

G1(q) =
1

1 + ζqE′/2p0
. (10)

G1(q) has the meaningful property that it predicts less
good contact for large q and small p0.

While we have not gone yet beyond harmonic correc-
tions, it is worth discussing the effect that they and de-
viations from colored noise would have if these correc-
tions were mapped onto the diffusion equation repre-
sentation: First, higher-order corrections would induce
a stress-dependent drift term to the diffusion equation
and perhaps more importantly, it would also render D
stress dependent. (In addition, following Pawula’s the-
orem [20], one may need to add an infinite number of
terms to the drift/diffusion equation for an exact the-
ory.) Assuming that fluctuations in stress are large upon
a change in magnification η and following the laws of
large numbers, one may assume that D ∝ σ for large σ.
Such a diffusion coefficient would then result in an expo-
nential rather than in a Gaussian tail. Exponential tails
were indeed identified by Campaña and Müser in GFMD
calculations for experimental (non-colored noise) surface
topographies [13].

The diffusion equation representation will also have to
be modified at small p when repulsion is long ranged.
Stress would not vanish completely and thus the hard-
wall δ-function peak in Pr(p) at p = 0 will be broadened.
Persson uses the earlier-mentioned mirror Gaussians to
enforce Pr(p < 0) = 0. This method is identical to setting
D to zero for p ≤ 0. For continuously decaying repulsion,
the cutoff in D will have to be smoothed. If one wishes
to switch D from zero to its default value over a finite
pressure range so that D and its first two derivatives
are continuous functions of p, then the correction factor
{1− θ(pc − p) cos(πp/pc)} appears to be the most simple
choice. where θ(. . . ) is the Heaviside step function. This
way D remains unaltered above the cutoff stress pc and
thus does not noticeably affect width and tail of Pr(p) but
only the way in which the δ(p)-peak of Pr(p) broadens.

It is now possible to compare pressure histograms that
are based on the new theory to numerical simulations,
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which are obtained with Green’s function molecular dy-
namics (GFMD) [19]. The system that was investi-
gated has roughness on wavelengths 32 ≤ λ ≤ 1024,
the Hurst roughness exponent is H = 0.3, and the root-
mean-square slope is 0.031. Furthermore, E′ = 8/3 and
p0 = 0.004 in the same units. ζ is varied between 0.001
and 4. The unit for length scale is defined by the distance
between two grid points in the numerical solution. Ex-
cept for replacing hard-wall with exponential repulsion,
we proceed in the same way as in Ref. 13. Fig. 1 sum-
marizes the comparison between theory and simulation.
Values of pc used for our calculations were pc = 0.0027
for all curves with ζ ≥ 0.25 and pc = 0.0082[0.0068] for
ζ = 0.01[0.001]. These three values for pc are the only
adjustable coefficients used in Fig. 1.
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FIG. 1: Pressure distribution Pr(p) obtained for a fractal sur-
face with different values of ζ. Symbols show numerical data,
full lines correspond to calculations based on our approach.
The dashed line corresponds to the original theory by Persson,
to which our theory reduces in the limit ζ → 0.

Fig. 1 supports the claim that the theory presented
here allows one to derive systematic corrections to Pers-
son theory, as for large ζ theory and simulations agree
flawlessly. When ζ decreases, the second-order cumu-
lant expansion cannot be accurate any longer and conse-
quently deviations between theory and simulations arise.
Surprisingly, at very small values of ζ the curvature of
ln Pr(p) is only off by about 20% and thus more ac-
curate than at intermediate values of ζ, which is why
the relatively good agreement at small ζ must be fortu-
itous. This argument is supported by the observation
that the stress-autocorrelation function obtained numer-
ically at low loads does not match Persson’s parameter-
ization of the diffusion coefficient for small relative con-
tact areas [9]. Unfortunately, the similarly good predice-
tion for the curvature of ln Pr(p) made by overlap models
must likewise be seen as fortuitous, because their contact
autocorrelation functions are also in contradiction with

computational results [9, 10].

In conclusion, we have presented a field theory for the
contact mechanics of a harmonic solid pressed against a
rough, rigid counter face. The theory starts from the for-
mal definition of the pressure distribution and does not
contain any uncontrolled approximations. The leading-
order term corresponds to Persson’s contact mechanics
theory. Harmonic corrections greatly improve the agree-
ment between theory and numerically exact calculations.
It remains to be seen if including a few more higher-order
terms than those currently used will suffice to address the
complicated contact mechanics of real-life surfaces.
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